If it works it works, the fugliest code ever hehe

This commit is contained in:
2023-11-29 15:50:26 +01:00
parent 8e277d86f5
commit 1910caab51

View File

@@ -316,6 +316,372 @@ fn solve_first(instructions: &[Instruction], output_wire: &str) -> (u16, HashMap
} }
} }
fn solve_second(
instructions: &[Instruction],
output_wire: &str,
override_wire: &str,
) -> (u16, HashMap<String, Node>) {
// Because the graph is centered around the edges instead of nodes, we have to go through a lot of gymnastics to build it
let mut signals = HashMap::<String, Node>::new();
// For OneAnd operator
signals.insert("one".to_string(), (Port::Noop, vec![], Some(1)));
for instruction in instructions {
match instruction {
Instruction::Assign(value, wire) => {
signals.insert(wire.to_owned(), (Port::Noop, vec![], Some(*value)));
}
Instruction::Connect(source, target) => {
signals.insert(
target.to_owned(),
(Port::Noop, vec![source.to_owned()], None),
);
}
// We could already preprocess a bit by calculating the result if we know the input, but that might make it overly complicated a this point
// Instead, we do the actual traversal and calculations later
Instruction::Not(source, target) => {
signals.insert(
target.to_owned(),
(Port::Not, vec![source.to_owned()], None),
);
}
Instruction::And(source_1, source_2, target) => {
signals.insert(
target.to_owned(),
(
Port::And,
vec![source_1.to_owned(), source_2.to_owned()],
None,
),
);
}
Instruction::OneAnd(source, target) => {
signals.insert(
target.to_owned(),
(Port::And, vec!["one".to_string(), source.to_owned()], None),
);
}
Instruction::Or(source_1, source_2, target) => {
signals.insert(
target.to_owned(),
(
Port::Or,
vec![source_1.to_owned(), source_2.to_owned()],
None,
),
);
}
Instruction::Lshift(shift, source, target) => {
signals.insert(
target.to_owned(),
(Port::Lshift(*shift), vec![source.to_owned()], None),
);
}
Instruction::Rshift(shift, source, target) => {
signals.insert(
target.to_owned(),
(Port::Rshift(*shift), vec![source.to_owned()], None),
);
}
};
}
let mut edges_to_calc = vec![output_wire.to_string()];
while !edges_to_calc.is_empty() {
let edge_to_calc = edges_to_calc.pop().unwrap();
if let Some(signal) = signals.get(&edge_to_calc) {
match signal {
(port, incoming_wires, None) => {
let incoming_signals: Vec<Option<u16>> = incoming_wires
.iter()
.map(|x| match signals.get(x).unwrap() {
(_, _, None) => None,
(_, _, s) => s.to_owned(),
})
.collect();
if incoming_signals.iter().any(|s| s.is_none()) {
edges_to_calc.push(edge_to_calc);
for (s, w) in zip(incoming_signals, incoming_wires) {
if s.is_none() {
edges_to_calc.push(w.to_owned());
}
}
} else {
match port {
Port::Noop => {
assert_eq!(incoming_signals.len(), 1);
signals.insert(
edge_to_calc.to_owned(),
(*port, incoming_wires.to_owned(), incoming_signals[0]),
);
}
Port::Not => {
assert_eq!(incoming_signals.len(), 1);
signals.insert(
edge_to_calc.to_owned(),
(
*port,
incoming_wires.to_owned(),
Some(!incoming_signals[0].unwrap()),
),
);
}
Port::And => {
assert_eq!(incoming_signals.len(), 2);
signals.insert(
edge_to_calc.to_owned(),
(
*port,
incoming_wires.to_owned(),
Some(
incoming_signals[0].unwrap()
& incoming_signals[1].unwrap(),
),
),
);
}
Port::Or => {
assert_eq!(incoming_signals.len(), 2);
signals.insert(
edge_to_calc.to_owned(),
(
*port,
incoming_wires.to_owned(),
Some(
incoming_signals[0].unwrap()
| incoming_signals[1].unwrap(),
),
),
);
}
Port::Lshift(shift) => {
assert_eq!(incoming_signals.len(), 1);
signals.insert(
edge_to_calc.to_owned(),
(
*port,
incoming_wires.to_owned(),
Some(incoming_signals[0].unwrap() << shift),
),
);
}
Port::Rshift(shift) => {
assert_eq!(incoming_signals.len(), 1);
signals.insert(
edge_to_calc.to_owned(),
(
*port,
incoming_wires.to_owned(),
Some(incoming_signals[0].unwrap() >> shift),
),
);
}
}
}
}
(_, _, Some(_)) => { /* do nothing */ }
}
} else {
unreachable!();
}
}
let result = signals.get(&output_wire.to_string()).unwrap().to_owned();
for instruction in instructions {
match instruction {
Instruction::Assign(value, wire) => {
signals.insert(wire.to_owned(), (Port::Noop, vec![], Some(*value)));
}
Instruction::Connect(source, target) => {
signals.insert(
target.to_owned(),
(Port::Noop, vec![source.to_owned()], None),
);
}
// We could already preprocess a bit by calculating the result if we know the input, but that might make it overly complicated a this point
// Instead, we do the actual traversal and calculations later
Instruction::Not(source, target) => {
signals.insert(
target.to_owned(),
(Port::Not, vec![source.to_owned()], None),
);
}
Instruction::And(source_1, source_2, target) => {
signals.insert(
target.to_owned(),
(
Port::And,
vec![source_1.to_owned(), source_2.to_owned()],
None,
),
);
}
Instruction::OneAnd(source, target) => {
signals.insert(
target.to_owned(),
(Port::And, vec!["one".to_string(), source.to_owned()], None),
);
}
Instruction::Or(source_1, source_2, target) => {
signals.insert(
target.to_owned(),
(
Port::Or,
vec![source_1.to_owned(), source_2.to_owned()],
None,
),
);
}
Instruction::Lshift(shift, source, target) => {
signals.insert(
target.to_owned(),
(Port::Lshift(*shift), vec![source.to_owned()], None),
);
}
Instruction::Rshift(shift, source, target) => {
signals.insert(
target.to_owned(),
(Port::Rshift(*shift), vec![source.to_owned()], None),
);
}
};
}
signals.insert(
override_wire.to_string(),
(Port::Noop, vec![], Some(result.2.unwrap())),
);
let mut edges_to_calc = vec![output_wire.to_string()];
while !edges_to_calc.is_empty() {
let edge_to_calc = edges_to_calc.pop().unwrap();
if let Some(signal) = signals.get(&edge_to_calc) {
match signal {
(port, incoming_wires, None) => {
let incoming_signals: Vec<Option<u16>> = incoming_wires
.iter()
.map(|x| match signals.get(x).unwrap() {
(_, _, None) => None,
(_, _, s) => s.to_owned(),
})
.collect();
if incoming_signals.iter().any(|s| s.is_none()) {
edges_to_calc.push(edge_to_calc);
for (s, w) in zip(incoming_signals, incoming_wires) {
if s.is_none() {
edges_to_calc.push(w.to_owned());
}
}
} else {
match port {
Port::Noop => {
assert_eq!(incoming_signals.len(), 1);
signals.insert(
edge_to_calc.to_owned(),
(*port, incoming_wires.to_owned(), incoming_signals[0]),
);
}
Port::Not => {
assert_eq!(incoming_signals.len(), 1);
signals.insert(
edge_to_calc.to_owned(),
(
*port,
incoming_wires.to_owned(),
Some(!incoming_signals[0].unwrap()),
),
);
}
Port::And => {
assert_eq!(incoming_signals.len(), 2);
signals.insert(
edge_to_calc.to_owned(),
(
*port,
incoming_wires.to_owned(),
Some(
incoming_signals[0].unwrap()
& incoming_signals[1].unwrap(),
),
),
);
}
Port::Or => {
assert_eq!(incoming_signals.len(), 2);
signals.insert(
edge_to_calc.to_owned(),
(
*port,
incoming_wires.to_owned(),
Some(
incoming_signals[0].unwrap()
| incoming_signals[1].unwrap(),
),
),
);
}
Port::Lshift(shift) => {
assert_eq!(incoming_signals.len(), 1);
signals.insert(
edge_to_calc.to_owned(),
(
*port,
incoming_wires.to_owned(),
Some(incoming_signals[0].unwrap() << shift),
),
);
}
Port::Rshift(shift) => {
assert_eq!(incoming_signals.len(), 1);
signals.insert(
edge_to_calc.to_owned(),
(
*port,
incoming_wires.to_owned(),
Some(incoming_signals[0].unwrap() >> shift),
),
);
}
}
}
}
(_, _, Some(_)) => { /* do nothing */ }
}
} else {
unreachable!();
}
}
let result = signals.get(&output_wire.to_string()).unwrap().to_owned();
match result {
(_, _, None) => (0, HashMap::new()),
(_, _, Some(s)) => (s, signals.to_owned()),
}
}
fn main() { fn main() {
println!("Hello, this is Patrick!"); println!("Hello, this is Patrick!");
@@ -326,4 +692,11 @@ fn main() {
let (first_result, _) = solve_first(&instructions[..], "a"); let (first_result, _) = solve_first(&instructions[..], "a");
println!("The provided signal at wire 'a' is {}", first_result); println!("The provided signal at wire 'a' is {}", first_result);
let (second_result, _) = solve_second(&instructions[..], "a", "b");
println!(
"The signal at 'a' is {} when overriding 'b' with it and running it again",
{ second_result }
);
} }