I solved it by using someones pseudocode and to be honest I don't completely understand how it works
This commit is contained in:
76
projecteuler/064/main.cpp
Normal file
76
projecteuler/064/main.cpp
Normal file
@@ -0,0 +1,76 @@
|
||||
/*
|
||||
Find the number of continued fractions for the square roots of n <= 10000 which have an odd period
|
||||
*/
|
||||
|
||||
#include <bits/stdc++.h>
|
||||
|
||||
using namespace std;
|
||||
|
||||
int gcd(int a, int b){
|
||||
if(b == 0){
|
||||
return a;
|
||||
}
|
||||
return gcd(b, a % b);
|
||||
}
|
||||
|
||||
int gcd(int a, int b, int c){
|
||||
return gcd(a, gcd(b, c));
|
||||
}
|
||||
|
||||
// Pseudocode found in the video on continued fraction of square roots of integers https://www.youtube.com/watch?v=GFJsU9QsytM
|
||||
|
||||
bool check(int n){
|
||||
float x = sqrt((float)n);
|
||||
|
||||
if(x != sqrt(n)){
|
||||
vector<int> cf;
|
||||
int a, b = 1, c = 1, d = 0;
|
||||
int bn, cn, dn, g;
|
||||
int b1, c1, d1;
|
||||
|
||||
for(int i = 0; ; ++i){
|
||||
a = floor((floor(b * x) + d) / c);
|
||||
cf.push_back(a);
|
||||
|
||||
bn = b*c;
|
||||
cn = b*b*n - d*d - a*a*c*c + 2*a*c*d;
|
||||
dn = a*c*c - c*d;
|
||||
|
||||
g = gcd(bn, cn, dn);
|
||||
|
||||
b = bn / g;
|
||||
c = cn / g;
|
||||
d = dn / g;
|
||||
|
||||
if(i == 0){
|
||||
b1 = b;
|
||||
c1 = c;
|
||||
d1 = d;
|
||||
} else if(b1 == b && c1 == c && d1 == d){
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return cf.size() % 2 == 0;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
int main(){
|
||||
|
||||
cout << "Hello this is Patrick" << endl;
|
||||
auto start = chrono::high_resolution_clock::now();
|
||||
|
||||
int result = 0;
|
||||
|
||||
for(int n = 1; n <= 10000; ++n){
|
||||
result += check(n);
|
||||
}
|
||||
|
||||
cout << result << endl;
|
||||
|
||||
auto duration = chrono::duration_cast<chrono::milliseconds>(chrono::high_resolution_clock::now() - start);
|
||||
cout << (float)duration.count()/1000 << endl;
|
||||
return 0;
|
||||
}
|
||||
Reference in New Issue
Block a user