Finished 46 with quite a quick algorithm
This commit is contained in:
60
46/main.py
Normal file
60
46/main.py
Normal file
@@ -0,0 +1,60 @@
|
|||||||
|
'''
|
||||||
|
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.
|
||||||
|
|
||||||
|
9 = 7 + 2×12
|
||||||
|
15 = 7 + 2×22
|
||||||
|
21 = 3 + 2×32
|
||||||
|
25 = 7 + 2×32
|
||||||
|
27 = 19 + 2×22
|
||||||
|
33 = 31 + 2×12
|
||||||
|
|
||||||
|
It turns out that the conjecture was false.
|
||||||
|
|
||||||
|
What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?
|
||||||
|
'''
|
||||||
|
|
||||||
|
# So I guess I just go past all odd non-prime numbers and keep subtracting all double squares that fit and see if the rest is a prime
|
||||||
|
|
||||||
|
import math
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def sieve(n):
|
||||||
|
assert n > 1
|
||||||
|
|
||||||
|
ns = [True] * n
|
||||||
|
|
||||||
|
for i in range(2, math.ceil(np.sqrt(n))):
|
||||||
|
if ns[i]:
|
||||||
|
j = pow(i, 2)
|
||||||
|
|
||||||
|
while j < n:
|
||||||
|
ns[j] = False
|
||||||
|
j = j + i
|
||||||
|
|
||||||
|
return [i for i,val in enumerate(ns) if val][2:]
|
||||||
|
|
||||||
|
def main():
|
||||||
|
print("Hello this is Patrick")
|
||||||
|
|
||||||
|
end = 10000
|
||||||
|
|
||||||
|
primes = set(sieve(end))
|
||||||
|
|
||||||
|
for n in range(9, end, 2):
|
||||||
|
termination = True
|
||||||
|
|
||||||
|
if n not in primes:
|
||||||
|
x = 1
|
||||||
|
while n - 2 * x*x > 0:
|
||||||
|
if n - 2 * x*x in primes:
|
||||||
|
termination = False
|
||||||
|
break
|
||||||
|
|
||||||
|
x += 1
|
||||||
|
|
||||||
|
if termination:
|
||||||
|
print(n)
|
||||||
|
break
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
Reference in New Issue
Block a user