/* Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae: Triangle P3,n=n(n+1)/2 1, 3, 6, 10, 15, ... Square P4,n=n2 1, 4, 9, 16, 25, ... Pentagonal P5,n=n(3n−1)/2 1, 5, 12, 22, 35, ... Hexagonal P6,n=n(2n−1) 1, 6, 15, 28, 45, ... Heptagonal P7,n=n(5n−3)/2 1, 7, 18, 34, 55, ... Octagonal P8,n=n(3n−2) 1, 8, 21, 40, 65, ... The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties. The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first). Each polygonal type: triangle (P3,127=8128), square (P4,91=8281), and pentagonal (P5,44=2882), is represented by a different number in the set. This is the only set of 4-digit numbers with this property. Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and octagonal, is represented by a different number in the set. */ #include using namespace std; uint triangle(uint n){ return n * (n + 1) / 2; } uint square(uint n){ return n * n; } uint pentagonal(uint n){ return n * (3 * n - 1) / 2; } uint hexagonal(uint n){ return n * (2 * n - 1); } uint heptagonal(uint n){ return n * (5 * n - 3) / 2; } uint octogonal(uint n){ return n * (3 * n - 2); } bool validEnd(uint n){ return n % 100 >= 10; } bool matchingCycle(int a, int b){ return (a % 100) == (b / 100); } const unsigned int Limit = 10000; vector all(Limit, 0); uint finalMask = 0b111111000; void fillVector(vector & toFill, const uint bitmask, uint (*calc)(uint n)){ uint value = calc(0); for(uint i = 0; value < 10000; ++i){ if(value >= 1000 && validEnd(value)){ toFill[value] |= bitmask & finalMask; } value = calc(i + 1); } } void search(uint& currentMask, vector& results){ int backPart = results.back() % 100; bool gottem = false; for(int i = backPart * 100; i < backPart * 100 + 100; ++i){ if(all[i] && (currentMask | all[i]) != currentMask){ auto leftOvers = bitset<9>(~currentMask & all[i]); int maskCopy = currentMask; vector resultsCopy(results); // cout << "Currently looking at base of these numbers: "; // for(auto x : results){ // cout << x << " "; // } cout << '\n'; for(int j = 3; j < 9; ++j){ if(leftOvers[j]){ currentMask |= 1 << j; results.push_back(i); search(currentMask, results); if(currentMask == finalMask && matchingCycle(results.back(), results.front())){ gottem = true; break; } else{ currentMask = maskCopy; results = resultsCopy; } } } if(gottem){ break; } } } } int main(){ cout << "Hello this is Patrick" << endl; auto start = chrono::high_resolution_clock::now(); // Finally learned what exactly it means when 1 << n, which is nice fillVector(all, 1 << 3, triangle); fillVector(all, 1 << 4, square); fillVector(all, 1 << 5, pentagonal); fillVector(all, 1 << 6, hexagonal); fillVector(all, 1 << 7, heptagonal); fillVector(all, 1 << 8, octogonal); // for(uint i = 0; i < all.size(); ++i){ // if(all[i]){ // cout << i << " " << bitset<9>(all[i]) << endl; // } // } bool gottem = false; vector results; for(uint i = 0; i < all.size(); ++i){ if(all[i]){ // cout << "at " << i << '\n'; results.clear(); results.push_back(i); auto bs = bitset<9>(all[i]); for(uint j = 3; j < 9; ++j){ if(bs[j]){ uint mask = 1 << j; search(mask, results); if(mask == finalMask && matchingCycle(results.back(), results.front())){ gottem = true; break; } } } if(gottem) break; } } int sum = 0; for(auto r : results){ sum += r; cout << r << " "; } cout << endl; cout << "Constituting to sum of: " << sum << endl; auto duration = chrono::duration_cast(chrono::high_resolution_clock::now() - start); cout << (float)duration.count()/1000 << endl; return 0; }