135 lines
3.7 KiB
C++
135 lines
3.7 KiB
C++
/*
|
||
Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:
|
||
|
||
Triangle P3,n=n(n+1)/2 1, 3, 6, 10, 15, ...
|
||
Square P4,n=n2 1, 4, 9, 16, 25, ...
|
||
Pentagonal P5,n=n(3n−1)/2 1, 5, 12, 22, 35, ...
|
||
Hexagonal P6,n=n(2n−1) 1, 6, 15, 28, 45, ...
|
||
Heptagonal P7,n=n(5n−3)/2 1, 7, 18, 34, 55, ...
|
||
Octagonal P8,n=n(3n−2) 1, 8, 21, 40, 65, ...
|
||
The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.
|
||
|
||
The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first).
|
||
Each polygonal type: triangle (P3,127=8128), square (P4,91=8281), and pentagonal (P5,44=2882), is represented by a different number in the set.
|
||
This is the only set of 4-digit numbers with this property.
|
||
Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and octagonal, is represented by a different number in the set.
|
||
*/
|
||
|
||
#include <iostream>
|
||
#include <chrono>
|
||
#include <vector>
|
||
#include <algorithm>
|
||
#include <map>
|
||
|
||
using namespace std;
|
||
|
||
uint triangle(uint n){
|
||
return n * (n + 1) / 2;
|
||
}
|
||
|
||
uint square(uint n){
|
||
return n * n;
|
||
}
|
||
|
||
uint pentagonal(uint n){
|
||
return n * (3 * n - 1) / 2;
|
||
}
|
||
|
||
uint hexagonal(uint n){
|
||
return n * (2 * n - 1);
|
||
}
|
||
|
||
uint heptagonal(uint n){
|
||
return n * (5 * n - 3) / 2;
|
||
}
|
||
|
||
uint octogonal(uint n){
|
||
return n * (3 * n - 2);
|
||
}
|
||
|
||
bool validEnd(uint n){
|
||
return n % 100 >= 10;
|
||
}
|
||
|
||
void fillVector(std::vector<uint> & toFill, const uint bitmask, uint (*calc)(uint n)){
|
||
uint value = calc(0);
|
||
|
||
for(uint i = 0; value < 10000; ++i){
|
||
if(value >= 1000 && validEnd(value)){
|
||
toFill[value] |= bitmask;
|
||
}
|
||
value = calc(i + 1);
|
||
}
|
||
}
|
||
|
||
// Non-recursive version of Heap's algorithm for permutations
|
||
// Source: https://en.wikipedia.org/wiki/Heap%27s_algorithm
|
||
vector<vector<uint>> permutations(uint n, vector<uint> & A){
|
||
vector<vector<uint>> result;
|
||
vector<uint> c(n, 0);
|
||
|
||
result.push_back(A);
|
||
|
||
uint i = 1;
|
||
while(i < n){
|
||
if(c[i] < i){
|
||
if(i % 2 == 0){
|
||
swap(A[0], A[i]);
|
||
} else{
|
||
swap(A[c[i]], A[i]);
|
||
}
|
||
result.push_back(A);
|
||
c[i] += 1;
|
||
i = 1;
|
||
} else{
|
||
c[i] = 0;
|
||
i++;
|
||
}
|
||
}
|
||
return result;
|
||
}
|
||
|
||
bool checkCyclicness(const vector<uint> & v){
|
||
for(int i = 0; i < 5; ++i){
|
||
uint end = v[i] % 100;
|
||
uint start = v[i + 1] / 100;
|
||
|
||
if(end != start){
|
||
return false;
|
||
}
|
||
}
|
||
if(v[5] % 100 != v[0] / 100){
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
void search(vector<uint> & sequence, uint mask = 0){
|
||
|
||
}
|
||
|
||
int main(){
|
||
|
||
cout << "Hello this is Patrick" << endl;
|
||
auto start = chrono::high_resolution_clock::now();
|
||
|
||
// creating big vector with the numeric values and their corresponding mask
|
||
uint finalMask = 0b111111000;
|
||
|
||
// Finally learned what exactly it means when 1 << n, which is nice
|
||
vector<uint> all(10000, 0);
|
||
fillVector(all, 1 << 3, triangle);
|
||
fillVector(all, 1 << 4, square);
|
||
fillVector(all, 1 << 5, pentagonal);
|
||
fillVector(all, 1 << 6, hexagonal);
|
||
fillVector(all, 1 << 7, heptagonal);
|
||
fillVector(all, 1 << 8, octogonal);
|
||
|
||
|
||
|
||
cout << "Cycle not found" << endl;
|
||
auto duration = chrono::duration_cast<chrono::milliseconds>(chrono::high_resolution_clock::now() - start);
|
||
cout << (float)duration.count()/1000 << endl;
|
||
return 0;
|
||
} |