Files
contests/projecteuler/072/main.cpp

50 lines
1.2 KiB
C++

/*
Counting Fractions
Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that there are 21 elements in this set.
How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000?
*/
#include <bits/stdc++.h>
using namespace std;
const int MAX = 1000000;
int main(){
cout << "Hello this is Patrick" << endl;
auto start = chrono::high_resolution_clock::now();
vector<int> phi(MAX + 1);
for(int i = 2; i <= MAX; ++i){
phi[i] = i;
}
long long sum = 0;
for(int i = 2; i <= MAX; ++i){
if(phi[i] == i){
for(int j = i; j <= MAX; j += i){
phi[j] = phi[j] / i * (i - 1);
}
}
sum += phi[i];
}
cout << sum << endl;
auto duration = chrono::duration_cast<chrono::milliseconds>(chrono::high_resolution_clock::now() - start);
cout << (float)duration.count()/1000 << endl;
return 0;
}