0.3.6 of week 1 finished sort of

This commit is contained in:
2023-05-12 15:29:33 +02:00
parent 5a9a9d2bc8
commit f335b5cf12
4 changed files with 35 additions and 8 deletions

Binary file not shown.

Binary file not shown.

View File

@@ -1,6 +1,8 @@
\documentclass[../main_text.tex]{subfiles} \documentclass[../main_text.tex]{subfiles}
\begin{document} \begin{document}
\section*{Week 1}
\exercise*[0.3.6] \exercise*[0.3.6]
\begin{enumerate}[label=\emph{\alph*)}] \begin{enumerate}[label=\emph{\alph*)}]
\item Wanting to show: \item Wanting to show:
@@ -8,15 +10,40 @@
In order to prove this equivalence, we have to prove the implication both ways. We use two lemmas for this. In order to prove this equivalence, we have to prove the implication both ways. We use two lemmas for this.
\begin{lemma}[test] \begin{lemma}
\label{lem:set1}
$A \cap (B \cup C) \implies (A \cap B) \cup (A \cap C)$ $A \cap (B \cup C) \implies (A \cap B) \cup (A \cap C)$
\end{lemma}
Let $x \in A \cap (B \cup C)$. Let $x \in A \cap (B \cup C)$.
By the definition of set intersection, $x \in A$ and $x \in B \cup C$.
By the definition of set union, $x \in A$ and $(x \in B$ or $x \in C)$.
From propositional logic we know that for propositions $P$, $Q$ and $R$ the following holds:
$P \land (Q \lor R) \iff (P \land Q) \lor (P \land R)$.
So, substituting for this particular case yields $(x \in A$ and $x \in B)$ or $(x \in A$ and $x \in C)$.
Using the definition of set intersection again gets $x \in A \cap B$ or $x \in A \cap C$.
Using the definition of set union again gives $x \in (A \cap B) \cup (A \cap C)$. \qed
\begin{lemma}
\label{lem:set2}
$(A \cap B) \cup (A \cap C) \implies A \cap (B \cup C)$
\end{lemma} \end{lemma}
\begin{definition} Let $x \in (A \cap B) \cup (A \cap C)$.
Test. By the definition of set union, $x \in (A \cap B)$ or $x \in (A \cap C)$.
\end{definition} By the definition of set intersection, $(x \in A$ or $x \in B)$ and $(x \in A$ or $x \in B)$.
\item Using the same propositional logical equivalence as in Lemma \ref{lem:set1}, this gives
$x \in A$ and $(x \in B$ or $x \in C)$.
Wrapping up, we use the definition of set union to get $x \in A$ and $x \in B \cup C$ and
the definition of intersection to get $x \in A \cap (B \cup C)$. \qed
Using Lemma \ref{lem:set1} and \ref{lem:set2}, we get the desired equivalence of
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. \qed
\item Wanting to show:
$A \cup (B \cap C) = (A \cup B) \cap (a \cup C)$
This proof is so similar to a) that it feels like a waste of time and will therefore be left to the reader.
\end{enumerate} \end{enumerate}
\hrule
\end{document} \end{document}