0.3.6 of week 1 finished sort of
This commit is contained in:
Binary file not shown.
Submodule assignments/template updated: 7b85d98714...de9419d4cc
Binary file not shown.
@@ -1,6 +1,8 @@
|
||||
\documentclass[../main_text.tex]{subfiles}
|
||||
\begin{document}
|
||||
|
||||
\section*{Week 1}
|
||||
|
||||
\exercise*[0.3.6]
|
||||
\begin{enumerate}[label=\emph{\alph*)}]
|
||||
\item Wanting to show:
|
||||
@@ -8,15 +10,40 @@
|
||||
|
||||
In order to prove this equivalence, we have to prove the implication both ways. We use two lemmas for this.
|
||||
|
||||
\begin{lemma}[test]
|
||||
\begin{lemma}
|
||||
\label{lem:set1}
|
||||
$A \cap (B \cup C) \implies (A \cap B) \cup (A \cap C)$
|
||||
|
||||
Let $x \in A \cap (B \cup C)$.
|
||||
\end{lemma}
|
||||
\begin{definition}
|
||||
Test.
|
||||
\end{definition}
|
||||
\item
|
||||
|
||||
Let $x \in A \cap (B \cup C)$.
|
||||
By the definition of set intersection, $x \in A$ and $x \in B \cup C$.
|
||||
By the definition of set union, $x \in A$ and $(x \in B$ or $x \in C)$.
|
||||
From propositional logic we know that for propositions $P$, $Q$ and $R$ the following holds:
|
||||
$P \land (Q \lor R) \iff (P \land Q) \lor (P \land R)$.
|
||||
So, substituting for this particular case yields $(x \in A$ and $x \in B)$ or $(x \in A$ and $x \in C)$.
|
||||
Using the definition of set intersection again gets $x \in A \cap B$ or $x \in A \cap C$.
|
||||
Using the definition of set union again gives $x \in (A \cap B) \cup (A \cap C)$. \qed
|
||||
|
||||
\begin{lemma}
|
||||
\label{lem:set2}
|
||||
$(A \cap B) \cup (A \cap C) \implies A \cap (B \cup C)$
|
||||
\end{lemma}
|
||||
Let $x \in (A \cap B) \cup (A \cap C)$.
|
||||
By the definition of set union, $x \in (A \cap B)$ or $x \in (A \cap C)$.
|
||||
By the definition of set intersection, $(x \in A$ or $x \in B)$ and $(x \in A$ or $x \in B)$.
|
||||
Using the same propositional logical equivalence as in Lemma \ref{lem:set1}, this gives
|
||||
$x \in A$ and $(x \in B$ or $x \in C)$.
|
||||
Wrapping up, we use the definition of set union to get $x \in A$ and $x \in B \cup C$ and
|
||||
the definition of intersection to get $x \in A \cap (B \cup C)$. \qed
|
||||
|
||||
Using Lemma \ref{lem:set1} and \ref{lem:set2}, we get the desired equivalence of
|
||||
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. \qed
|
||||
\item Wanting to show:
|
||||
$A \cup (B \cap C) = (A \cup B) \cap (a \cup C)$
|
||||
|
||||
This proof is so similar to a) that it feels like a waste of time and will therefore be left to the reader.
|
||||
\end{enumerate}
|
||||
|
||||
\hrule
|
||||
|
||||
\end{document}
|
||||
|
||||
Reference in New Issue
Block a user