Finished assignment 1 #12
Binary file not shown.
@@ -1,6 +1,7 @@
|
|||||||
\documentclass{template/homework}
|
\documentclass{template/homework}
|
||||||
|
|
||||||
\usepackage{enumitem}
|
\usepackage{enumitem}
|
||||||
|
\usepackage{tcolorbox}
|
||||||
\usepackage{subfiles}
|
\usepackage{subfiles}
|
||||||
|
|
||||||
\title{MIT OCW Real Analysis}
|
\title{MIT OCW Real Analysis}
|
||||||
|
|||||||
Binary file not shown.
@@ -4,11 +4,16 @@
|
|||||||
\section*{Week 1}
|
\section*{Week 1}
|
||||||
|
|
||||||
\exercise*[0.3.6]
|
\exercise*[0.3.6]
|
||||||
|
\begin{tcolorbox}
|
||||||
|
Prove:
|
||||||
\begin{enumerate}[label=\emph{\alph*)}]
|
\begin{enumerate}[label=\emph{\alph*)}]
|
||||||
\item Wanting to show:
|
\item $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
|
||||||
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
|
\item $A \cup (B \cap C) = (A \cup B) \cap (a \cup C)$
|
||||||
|
\end{enumerate}
|
||||||
|
\end{tcolorbox}
|
||||||
|
|
||||||
In order to prove this equivalence, we have to prove the implication both ways. We use two lemmas for this.
|
\begin{enumerate}[label=\emph{\alph*)}, wide]
|
||||||
|
\item In order to prove this equivalence, we have to prove the implication both ways. We use two lemmas for this.
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
\label{lem:set1}
|
\label{lem:set1}
|
||||||
@@ -28,6 +33,7 @@
|
|||||||
\label{lem:set2}
|
\label{lem:set2}
|
||||||
$(A \cap B) \cup (A \cap C) \implies A \cap (B \cup C)$
|
$(A \cap B) \cup (A \cap C) \implies A \cap (B \cup C)$
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
||||||
Let $x \in (A \cap B) \cup (A \cap C)$.
|
Let $x \in (A \cap B) \cup (A \cap C)$.
|
||||||
By the definition of set union, $x \in (A \cap B)$ or $x \in (A \cap C)$.
|
By the definition of set union, $x \in (A \cap B)$ or $x \in (A \cap C)$.
|
||||||
By the definition of set intersection, $(x \in A$ or $x \in B)$ and $(x \in A$ or $x \in B)$.
|
By the definition of set intersection, $(x \in A$ or $x \in B)$ and $(x \in A$ or $x \in B)$.
|
||||||
@@ -38,12 +44,52 @@
|
|||||||
|
|
||||||
Using Lemma \ref{lem:set1} and \ref{lem:set2}, we get the desired equivalence of
|
Using Lemma \ref{lem:set1} and \ref{lem:set2}, we get the desired equivalence of
|
||||||
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. \qed
|
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. \qed
|
||||||
\item Wanting to show:
|
\item This proof is so similar to a) that it feels like a waste of time and will therefore be left to the reader.
|
||||||
$A \cup (B \cap C) = (A \cup B) \cap (a \cup C)$
|
|
||||||
|
|
||||||
This proof is so similar to a) that it feels like a waste of time and will therefore be left to the reader.
|
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
\hrule
|
|
||||||
|
\exercise[0.3.11]
|
||||||
|
\begin{tcolorbox}
|
||||||
|
Prove by induction that $n < 2^n$ for all $n \in \N$.
|
||||||
|
\end{tcolorbox}
|
||||||
|
|
||||||
|
For this proof we will use induction. For this, we have to prove the base case, i.e. $n = 1$,
|
||||||
|
and the inductive step, $n < 2^n \implies n + 1 < 2^{n+1}$.
|
||||||
|
|
||||||
|
First, let's prove the base case. When $n = 1$, we get $1 < 2^1$, which is certainly true.
|
||||||
|
|
||||||
|
Then, for the inductive step. We assume that the proposition holds for any $m \in \N$.
|
||||||
|
So, $m < 2^m$. Multiplying both sides with 2 gives $2m < 2^{m+1}$.
|
||||||
|
Since $m \geq 1$, $m + 1 < 2m$, and thus $m + 1 < 2m < 2^{m+1}$.
|
||||||
|
|
||||||
|
Since both the base case and inductive step hold, we can close the induction, proving the proposition. \qed
|
||||||
|
|
||||||
|
|
||||||
|
\exercise[0.3.12]
|
||||||
|
\begin{tcolorbox}
|
||||||
|
Show that for a finite set $A$ of cardinality $n$, the cardinality of $\mathcal{P}(A)$ is $2^n$.
|
||||||
|
\end{tcolorbox}
|
||||||
|
|
||||||
|
The power set of a set $A$, $\mathcal{P}(A)$, is defined as the set of all possible subsets of $A$.
|
||||||
|
This is very similar to an inclusion/exclusion problem.
|
||||||
|
It is built up by all the possible combinations of the different elements being either inside a certain subset or not.
|
||||||
|
For all possible subsets of $A$, we have that for every element $x \in A$ there are 2 possibilities,
|
||||||
|
either $x$ is in the subset or it isn't.
|
||||||
|
This means that for every additional element, the number of subsets increases by a factor of 2, with a minimum of 1,
|
||||||
|
in case of $A = \emptyset$. We will prove this formally now, using induction.
|
||||||
|
|
||||||
|
For this, the base case is a set of 1 element (but the theorem also holds for the empty set, where $n=0$).
|
||||||
|
Let us assume that $A := \{ \pi \}$.
|
||||||
|
Then the cardinality of $\mathcal{P}(A)$ is $2^1$, with $\mathcal{P}(A)= \{ \emptyset, \{ \pi \}\}$.
|
||||||
|
|
||||||
|
For the inductive step, we assume that for any set $B$ of cardinality $m$, the cardinality of the power set of $B$
|
||||||
|
is $2^m$. Then, we will add an element $x \notin B$ to $B$ to increase its cardinality by 1, to $m + 1$,
|
||||||
|
creating a new set $C$.
|
||||||
|
Note that all the possible subsets of $B$ are still viable subsets of $C$, since $B \subset C$.
|
||||||
|
In order to create the new subsets, we can simply keep all the subsets of $B$, duplicate them and take the union with
|
||||||
|
the new element $x$, so now we also have all combinations of the old sets with possibly $x$ being in them.
|
||||||
|
Since this doubles the number of subsets, the cardinality of $\mathcal{P}(C)$ is $2^{m+1}$.
|
||||||
|
|
||||||
|
Both the base case and the inductive step hold, which closes the induction and proves the proposition. \qed
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|||||||
Reference in New Issue
Block a user