Finished assignment 3 #14
Binary file not shown.
@@ -16,4 +16,6 @@
|
||||
\subfile{week1/main.tex}
|
||||
\clearpage
|
||||
\subfile{week2/main.tex}
|
||||
\clearpage
|
||||
\subfile{week3/main.tex}
|
||||
\end{document}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
\documentclass[../main_text.tex]{subfiles}
|
||||
\begin{document}
|
||||
|
||||
\section{Week 1}
|
||||
\section{Assignment 1}
|
||||
|
||||
\exercise*[0.3.6]
|
||||
% For some reason I can't put a fitted tcbox here and I really don't like it
|
||||
@@ -132,7 +132,7 @@ So each set $A_i := \{i\} \forall i \in \N$. Since $\N$ is countably infinite,
|
||||
Each set is definitely finite, because they all contain just one element.
|
||||
Finally, the union of the collection of sets is equal to $\N$, which is not a finite set.
|
||||
|
||||
\exercise*[6]
|
||||
\exercise[6]
|
||||
\begin{tcolorbox}
|
||||
\begin{enumerate}[label=\emph{\alph*)}, wide]
|
||||
\item Compute $f(4/15)$. Find $q$ such that $f(q) = 108$.
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
\documentclass[../main_text.tex]{subfiles}
|
||||
\begin{document}
|
||||
|
||||
\section{Week 2}
|
||||
\section{Assignment 2}
|
||||
|
||||
\exercise*[1.1.1]
|
||||
\begin{tcolorbox}
|
||||
@@ -133,7 +133,7 @@ $y$ can be given by the supremum; $x \leq \sup A$ and $y \leq \sup B$. So, $\sup
|
||||
|
||||
A similar argument can be given for the infimum, which is left to the reader.
|
||||
|
||||
\exercise*[7]
|
||||
\exercise[7]
|
||||
\begin{tcolorbox}
|
||||
Let
|
||||
\begin{equation*}
|
||||
|
||||
BIN
assignments/week3/main.pdf
Normal file
BIN
assignments/week3/main.pdf
Normal file
Binary file not shown.
8
assignments/week3/main.tex
Normal file
8
assignments/week3/main.tex
Normal file
@@ -0,0 +1,8 @@
|
||||
\documentclass[../main_text.tex]{subfiles}
|
||||
\begin{document}
|
||||
|
||||
\section{Assignment 3}
|
||||
|
||||
\exercise*
|
||||
|
||||
\end{document}
|
||||
Reference in New Issue
Block a user