
Part I

Assignment 3

Exercise 1

Suppose 𝑥, 𝑦 ∈ ℝ and 𝑥 < 𝑦. Prove that there exists 𝑖 ∈ ℝ\ℚ such that 𝑥 < 𝑖 < 𝑦.

If either 𝑥 or 𝑦 (or both) are not rational numbers, we can simply take the average like so: 𝑥+𝑦
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,

in a similar way we did for the rationals. Since 𝑥 or 𝑦 isn’t rational, the resulting fraction will
also not be a rational and this proves the statement.

Now if 𝑥, 𝑦 ∈ ℚ, we cannot use this average trick, because the resulting fraction will be a
rational itself and so it doesn’t satisfy the restriction that it must be in ℝ\ℚ. So we have to
take a different approach.

Let 𝑥, 𝑦 ∈ ℚ with 𝑥 < 𝑦 and 𝑚 ∶=
𝑥+𝑦
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, so 𝑥 < 𝑚 < 𝑦. Then, let 𝑋 = {𝑎 ∈ ℝ ∶ 𝑥 < 𝑎 < 𝑚}

and let 𝑌 = {𝑏 ∈ ℝ ∶ 𝑚 < 𝑏 < 𝑦}. Since 𝑥 < 𝑚 and 𝑚 < 𝑦, these are nonempty and they are
bounded, because of the restrictions 𝑥 < 𝑎 < 𝑚 and 𝑚 < 𝑏 < 𝑦. So, there exists 𝑘 ∈ 𝑋 , that is
not rational such that 𝑥 < 𝑘 < 𝑚 and there exists ℎ ∈ 𝑌 that is not rational such that 𝑚 < ℎ < 𝑦.
Pick either 𝑘 or ℎ as 𝑖, since 𝑥 < 𝑘 < 𝑚 < ℎ < 𝑦.

Exercise 2

Let 𝐸 ⊂ (0, 1) be the set of all real numbers with decimal representation using only the
digits 1 and 2:

𝐸 ∶= {𝑥 ∈ (0, 1) ∶ ∀𝑗 ∈ ℕ, ∃𝑑𝑗 ∈ {1, 2} such that 𝑥 = 0.𝑑1𝑑2...}

Prove that |𝐸| = |(ℕ)|.

As a hint to this exercise: Consider the function 𝑓 ∶ 𝐸 → (ℕ) such that if 𝑥 ∈ 𝐸, 𝑥 =

0.𝑑1𝑑2...,
𝑓 (𝑥) = {𝑗 ∈ ℕ ∶ 𝑑𝑗 = 2}.

In order to prove that 2 sets are of equal cardinality, we need to prove that there is a bijective
function between the 2 sets. In this case, the aforementioned hint function does the trick.
Non-formally speaking, it is exactly what we are looking for: it is a (weird) representation of
the power set of natural numbers, in that for every decimal, represented by a natural number,
it is decided if that decimal is a 2 or a 1. This is similar to the actual power set of the natural
numbers, in which for every natural number it is decided whether the number is in a subset or
not.

Now for a formal proof. To show that 𝑓 is bijective, we need to show that it is surjective and
injective.

Injectivity of 𝑓 In order to show that 𝑓 is injective, we have to show that for every 𝑥 ∈ 𝐸,
there is a unique 𝑦 ∈ (ℕ) for the function, by showing that 𝑓 (𝑎) = 𝑓 (𝑏) ⟹ 𝑎 = 𝑏.
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So, let’s assume that for some 𝑎, 𝑏 ∈ 𝐸, 𝑓 (𝑎) = 𝑓 (𝑏). So, there two sets of natural numbers
{𝑎1, 𝑎2, ..., 𝑎𝑛} = {𝑏1, 𝑏2, ..., 𝑏𝑚}. Equality in sets means that every element that is present
in the one set, is present in the other, and vice versa. No element that is present in either
set, is missing in the other. So, in this case, both sets will represent the same sequence of
digits that are 2. Because the only other option for digits is 1, that means the complete
digital representation of 𝑎 and 𝑏 are known, unique and the same. This concludes the
proof for injectivity.

Surjectivity of 𝑓 To prove surjectivity, we need to prove that for any arbitrary 𝑦 ∈ (ℕ),
there exists a corresponding 𝑥 ∈ 𝐸 such that 𝑓 (𝑥) = 𝑦.

So, take an arbitrary 𝑦 = {𝑦1, 𝑦2, ..., 𝑦𝑛}, where each 𝑦𝑖 ∈ ℕ and thus 𝑦 ∈ (ℕ). Then,
corresponding 𝑥 ∈ 𝐸 can be constructed easily as follows. Take a decimal number 0.𝑑1𝑑2...
and turn every decimal 𝑑𝑖 for which 𝑖 ∈ 𝑦 into a 2, and every other decimal into a 1. Since
every decimal can only be a 1 or 2, this handles every decimal correctly. Also, 𝑓 (𝑥) will
be in (ℕ).

Since, 𝑓 is 1-to-1 and onto, 𝑓 is bijective. Then, because there exists a bijective function from
𝐸 to (ℕ), |𝐸| = |(ℕ)|.

Exercise 3

(a) Let 𝐴 and 𝐵 be two disjoint, countably infinite sets. Prove that 𝐴 ∪ 𝐵 is countably
infinite.

(b) Prove that the set of irrational numbers, ℝ\ℚ, is uncountable. You may use the
facts discussed in the lectures that ℝ\ℚ is infinite and ℝ is uncountable without
proof.

(a) So let 𝐴 and 𝐵 be two disjoint, countably infinite sets. Since these sets are countably
infinite, a bijective function to ℕ exists for both functions separately. It is then straightforward
to map both these function together to ℤ instead, in the following way. Let 𝑓 be the bijective
function such that 𝑓 ∶ 𝐴 → ℕ and let 𝑔 be the bijective function such that 𝑔 ∶ 𝐵 → ℕ. Then,
we can define a new function ℎ ∶ 𝐴 ∪ 𝐵 → ℤ as

ℎ(𝑥) = 𝑓 (𝑥) if 𝑥 ∈ 𝐴

= −𝑔(𝑥) if 𝑥 ∈ 𝐵.

Since 𝐴 ∩ 𝐵 = ∅, this function is unambiguously defined. Since ℤ is countably infinite, 𝐴 ∪ 𝐵

is countably infinite as well.

(b) Because of part (a), we know that if we have two disjoint, countably infinite sets and join
them, the result is still countably infinite. The opposite must then also be true: if we have a
countably infinite set and we divide it into two disjoint subsets, both of which are infinite,
then they still must be countable.

So then, for ℝ\ℚ, we know that ℝ is uncountably infinite. So when we split it into rational
and irrational subsets, from which we know that ℚ is countably infinite, ℝ\ℚ must be at least
and at most uncountably infinite.
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Exercise 4

Let 𝐴 be a subset of ℝ which is bounded above, and let 𝑎0 be an upper bound for 𝐴. Prove
that 𝑎0 = sup𝐴 if and only if for every 𝜀 > 0, there exists 𝑎 ∈ 𝐴 such that 𝑎0 − 𝜀 < 𝑎.

Let 𝐴 ⊂ ℝ, with 𝐴 bounded above by 𝑎0. So, we have to prove the implication both ways. First,
let’s prove that the implication to the right (→).

Assume that 𝑎0 = sup𝐴, so for all 𝑎 ∈ 𝐴, 𝑎 ≤ 𝑎0. Also, let 𝜀 > 0. If 𝑎0 ∈ 𝐴, then we pick 𝑎0 as 𝑎
and get 𝑎0 − 𝜀 < 𝑎0, which holds ∀𝜀 > 0. If 𝑎0 ∉ 𝐴, then we choose 𝑎 as the average of 𝑎0 and
𝑎0 − 𝜀, which is definitely smaller than 𝑎0. We are allowed to pick this as 𝑎, because we assume
without loss of generality that 𝑎 ≥ inf 𝐴. Then we get

𝑎0 − 𝜀 <
𝑎0 + 𝑎0 − 𝜀

2

< 𝑎0 −
𝜀

2
⟹

−𝜀 < −
𝜀

2
.

Since 𝜀 > 0, this always holds.

Now for the implication to the left (←).

Assume now that the right side is true, i.e. let’s assume that ∀𝜀 > 0, there exists 𝑎 ∈ 𝐴 such
that 𝑎0 − 𝜀 < 𝑎. Again, let us first investigate the case where 𝑎0 ∈ 𝐴. Well certainly still, if 𝑎0 is
an upper bound for 𝐴 and it is also part of the set itself, it must be the supremum1.

Then, let’s assume that 𝑎0 ∉ 𝐴. Now, for all positive 𝜀, we know there exists an 𝑎 ∈ 𝐴 such that
𝑎 ≠ 𝑎0 and 𝑎0 − 𝜀 < 𝑎. Let us assume then that this implies that 𝑎0 ≠ sup𝐴 and try to come
to a contradiction. So, then there must be some 𝑏 = sup𝐴, which has as consequence that
𝑎 < 𝑏 < 𝑎0, since 𝑏 is still an uppoer bound of 𝐴 (and 𝑎0 ∉ 𝐴). Then, since 𝑏 > 𝑎, we can pick
𝑎 = 𝑏 − 𝜀 < 𝑏. So, from our initial assumption we get 𝑏 − 𝜀 < 𝑎0 − 𝜀 < 𝑏 − 𝜀 ⟹ 𝑏 < 𝑎0 < 𝑏,
which is a false statement. So, 𝑎0 = sup𝐴.

Since the implication holds both ways, the equivalence is proven.

1Proven in earlier exercise
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Exercise 5

(a) Let 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏. Prove that the sets (−∞, 𝑎), (𝑎, 𝑏) and (𝑏, ∞) are open.
(b) Let 𝐴 be a set (not necessarily a subset of ℝ), and for each 𝜆 ∈ 𝐴, let 𝑈𝜆 ⊂ ℝ. Prove

that if 𝑈𝜆 is open for all 𝜆 ∈ 𝐴 then the set

⋃

𝜆∈𝐴

𝑈𝜆 = {𝑥 ∈ ℝ ∶ ∃𝜆 ∈ 𝐴 such that 𝑥 ∈ 𝑈𝜆}

is open.
(c) Let 𝑛 ∈ ℕ, and let 𝑈1, ..., 𝑈𝑛 ⊂ ℝ. Prove that if 𝑈1, ..., 𝑈𝑛 are open then the set

𝑛

⋂

𝑚=1

𝑈𝑚 = {𝑥 ∈ ℝ ∶ 𝑥 ∈ 𝑈𝑚 for all 𝑚 = 1, ..., 𝑛}

is open.
(d) Is the set of rationals ℚ ⊂ ℝ open? Provide a proof to substantiate your claim.

(a) Since ℝ is open, it is clear that (−∞, 𝑎) and (𝑏, ∞) are open to the left and right respectively
as well. Also, their respective right and left side are present in (𝑎, 𝑏) as well, so we will only
prove it for this case. The other cases follow logically.

(b)

(c)

(d)
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