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Week 1

Exercise 0.3.6

Prove:
a) AnN(BUC)=(AnB)U(AnCQC)
b) Au(BnC)=(AuB)n(auC)

a) In order to prove this equivalence, we have to prove the implication both ways. We use
two lemmas for this.

Lemma 11— An(BuC) = (AnB)U(AnC)

Let x € An(BUC). By the definition of set intersection, x € A and x € BUC. By the definition of
set union, x € A and (x € B or x € C). From propositional logic we know that for propositions
P, Q and R the following holds: PA(QV R) < (P AQ)V (P A R). So, substituting for this
particular case yields (x € A and x € B) or (x € A and x € C). Using the definition of set
intersection again gets x € An B or x € An C. Using the definition of set union again gives
x€(AnB)U(ANnC). ]

Lemma 12— (AnB)U(ANC) = An(BuC(C)

Let x € (AN B) U (A n C). By the definition of set union, x € (An B) or x € (An C). By
the definition of set intersection, (x € A or x € B) and (x € A or x € B). Using the same
propositional logical equivalence as in Lemma 1.1, this gives x € A and (x € Bor x € C).
Wrapping up, we use the definition of set union to get x € A and x € B U C and the definition
of intersection to get x € An (BuC). O

Using Lemma 1.1 and 1.2, we get the desired equivalence of AN(BUC) = (AnB)U(ANC). O

b) This proof is so similar to a) that it feels like a waste of time and will therefore be left to
the reader.

Exercise 0.3.11

[ Prove by induction that n < 2" for all n € IN. ]

For this proof we will use induction. For this, we have to prove the base case, i.e. n = 1, and
the inductive step, n < 2" = n+1 < 2"



First, let’s prove the base case. When n = 1, we get 1 < 2', which is certainly true.

Then, for the inductive step. We assume that the proposition holds for any m € IN. So,
m < 2™. Multiplying both sides with 2 gives 2m < 2™*!. Since m > 1, m + 1 < 2m, and thus
m+1<2m< 2™

Since both the base case and inductive step hold, we can close the induction, proving the
proposition. U

Exercise 0.3.12

Show that for a finite set A of cardinality n, the cardinality of P(A) is 2".

The power set of a set A, P(A), is defined as the set of all possible subsets of A. This is very
similar to an inclusion/exclusion problem. It is built up by all the possible combinations of
the different elements being either inside a certain subset or not. For all possible subsets of
A, we have that for every element x € A there are 2 possibilities, either x is in the subset or
it isn’t. This means that for every additional element, the number of subsets increases by a
factor of 2, with a minimum of 1, in case of A = @. We will prove this formally now, using
induction.

For this, the base case is a set of 1 element (but the theorem also holds for the empty set,
where n = 0). Let us assume that A := {r}. Then the cardinality of P(A) is 2!, with P(A) =

@}

For the inductive step, we assume that for any set B of cardinality m, the cardinality of the
power set of B is 2™. Then, we will add an element x ¢ B to B to increase its cardinality by 1,
to m + 1, creating a new set C. Note that all the possible subsets of B are still viable subsets
of C, since B C C. In order to create the new subsets, we can simply keep all the subsets
of B, duplicate them and take the union with the new element x, so now we also have all
combinations of the old sets with possibly x being in them. Since this doubles the number of
subsets, the cardinality of P(C) is 2™,

Both the base case and the inductive step hold, which closes the induction and proves the
proposition. L

Exercise 0.3.15

[ Prove that n® + 5n is divisible by 6 for all n € IN. ]

In order to prove this proposition, we will use induction. To do this, we need to prove the
following lemma, of which we will see the usefulness later:

Lemma 4.1 — 3n® + 3n + 6 is divisible by 6 for alln € N,

This lemma we will also prove by induction. For this, we prove the base case and the inductive
step. First, for the base case we have n = 1, yielding 3- 1> + 3- 1 + 6 = 12, which is divisibly by
6.



Then, for the inductive step we assume that the lemma holds for a certain m € IN. So,
3m* 4+ 3m + 6 is divisible by 6. Substituting m with m + 1 gives 3(m + 1)* + 3(m + 1) + 6, which
can be expanded to 3m* + 9m + 12. Rewriting this with our assumption in mind gives the
following: (3m* + 3m + 6) + (6m + 6). We know from our assumption that the first part is
divisible by 6, and since m € IN, 6m + 6 is also divisible by 6, and so the whole expression is as
well. ]

Now for the original proposition. We will prove this by induction. First we prove the base case,
where n = 1. Then, 1° + 5 - 1 = 6, which is definitely divisible by 6.

For the inductive step, we assume that the proposition holds for a certain m € IN. So, m® + 5m
is divisible by 6. When we increase m by 1, we get: (m + 1)* + 5(m + 1). Expanded, this is the
same as m> + 3m® + 8m + 6. When we rearrange the terms we can get the following expression:
(m? + 5m) + (3m* + 3m + 6). From Lemma 4.1, we know that the latter part is divisible by 6.
The prior part is divisible by 6 because of the assumption of the inductive step. So together,
this expression is also divisible by 6. [

Exercise 0.3.19

Give an example of a countably infinite collection of finite sets A;, As, ..., whose union is
not a finite set.

The easiest example is simply the collection of singleton sets containing a natural number. So
each set A; := {i}Vi € N. Since N is countably infinite, so the collection of sets. Each set is
definitely finite, because they all contain just one element. Finally, the union of the collection
of sets is equal to IN, which is not a finite set.

Exercise 6

a) Compute f(4/15). Find g such that f(g) = 108.
b) Use the Theorem to prove that f is a bijection.

See the assignment PDF for the full assignment specification and theorem.

4

a) 1, if written as a product of prime factors, is equal to % Since this fraction is not a natural

number, we have to use the second part of the definition of f. So, f(gq) = 2%%-3%!71.521"1 = 240,

For the inverse of f, it is still necessary to compute the factorization in prime numbers. Using
the powers of the primes we can deduce whether the prime present is, if applicable, part of
either the numerator or the denominator. 180 = 2% 32 - 5!, Because of the way f is defined, we
know that all the prime factors with an even power are part of the numerator and all prime
factors with an odd power are part of the denominator (except 1, which just maps to itself).
When we backtrack using this information, we then get the following fraction: 23l = 6

3
51 5°
b) In order to prove that f is a bijection, we have to prove that f is injective and surjective.
Injectivity: We want to show that f is 1-1,ie. f(x;) = f(xn) = x = x,.

So, let’s assume that for any x;,x; € {g > 0 : g € Q}, f(x1) = f(x2). Since the function
f has 3 parts, based on the input, we have to prove this statement for those 3 parts



separately as well. First, the easiest case, where the input set is {1}. Then, f(x) = 1Vx, so
f is injective.

For the case where x € N\{1}, f(x) := p?" - -- p7¥. We know from the Theorem that
any fraction can be uniquely written as a product of prime factors with exponents, so
when we assume f(x;) = f(x,), we can also assume that x; and x, have a unique prime
factorization associated with them. So let’s assume that f(x;) = f(x;). This means that
2r 2ry 281 25\

Py =4y, where pi and qjsj denote the prime factors for both sides. We
can further expand this expression into:

PPl DN PN =@ @y g = (6.1)
PPN PPN =R G = (6.2)
X1 X1 = X9 Xy (6.3)

Because we know that each fraction constitutes a unique prime factorization, we also
know that x; and x, are uniquely derived. This is why the implications in the equation
above hold. Because both x; and x, > 0, x; = x3.

Now for the case where x € Q\IN. Then f(x) := p¥' ... piNg* ™' ... g&M™", using
the unique factorization derived from the Theorem. So again, we assume that for any
x1, %, € Q\N, f(x;) = f(x,). Using the definition of f, we get: pi" -+ pa¥g? ™. g™ =

2t 2u; -1 - : : -
vyt - vEw T P m1 L Expanding this expression further, we get:
2r, 2ry 281 25Mm 2t 2t, 2uy 2u,
v 2w wim
b PN I U W WL W — (6.4)
P PN Q1 qm U1 Up W Wi
151 151 IN | gIN 51, 51 SM o, A SM t, ot th .yt 481 L a1 Um | 4l
PrPr PNCPNG G Gv cG9u  Ur U Uy U Wy oWy Wt W
P1 PN q qm U1 Un wi W
(6.5)
X1 X1 _ X2 " X (6.6)

pl...pN.ql...qM Ul...vn.wl...wm

I’'m kinda stuck at this point. I see that this is definitely injective, since the way the
exponents are defined, you will always know which prime factors belong to the numerator
or to the denominator. But I fail to prove this using the direct definition of f like we
could do for the natural numbers. This is because the products of the denominators in
the last equation are not unique. So maybe I simplified them too much and shouldn’t try
and write them in terms of x; and x; like we did earlier, and try and focus more on just
the exponents, but I feel it becomes really hard to show that x; = x, that way.

Surjectivity: We want to show that f is onto, i.e. f({g>0: qe Q})=N.

In order to prove this, we will take an arbitrary y € N, and show that 3x : f(x) = y.
We know from the Theorem that y can be written as a product of unique prime factors,
pr -+ py. From the definition of f we know that if the exponents of the prime factors r
are even, they belong to the numerator of x and if the exponents are odd, they belong

'The super- and subscripts become a bit abracadabra, but I think everything is unique and readable this way.



to the denominator of x. If there are no prime factors with odd exponents, x will be a
natural number. If y = 1, x = 1.

We will now only consider the case that y is a prime factorization with factors with odd
exponents 2. Then, we can find x in the following way: we multiply each prime factor
p? ™! with p; and take the square root. We know that the square root of p." is defined,
since the exponent is multiplied by a factor 2, which the root negates. This will yield a
prime factorization that we will put in the denominator of a fraction. We do the same
for the prime factors with even exponent, but without multiplying with p;. The prime
factors we gain like that we put as a product in the numerator of the fraction. So, we
gain a fraction with both the numerator and the denominator consisting of products of
prime numbers, which are natural numbers, and so the fraction is positive and in fact a

fraction. ]

?The case for a prime factorization with solely even exponents can be backtracked in a similar fashion, just
without the case for odd exponents and making x a fraction.
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