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Week 1

Exercise 0.3.6

Prove:
a) 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

b) 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝑎 ∪ 𝐶)

a) In order to prove this equivalence, we have to prove the implication both ways. We use
two lemmas for this.

Lemma 0.1 — 𝐴 ∩ (𝐵 ∪ 𝐶) ⟹ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

Let 𝑥 ∈ 𝐴∩(𝐵∪𝐶). By the definition of set intersection, 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵∪𝐶. By the definition of
set union, 𝑥 ∈ 𝐴 and (𝑥 ∈ 𝐵 or 𝑥 ∈ 𝐶). From propositional logic we know that for propositions
𝑃 , 𝑄 and 𝑅 the following holds: 𝑃 ∧ (𝑄 ∨ 𝑅) ⟺ (𝑃 ∧ 𝑄) ∨ (𝑃 ∧ 𝑅). So, substituting for this
particular case yields (𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵) or (𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐶). Using the definition of set
intersection again gets 𝑥 ∈ 𝐴 ∩ 𝐵 or 𝑥 ∈ 𝐴 ∩ 𝐶. Using the definition of set union again gives
𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).

Lemma 0.2 — (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) ⟹ 𝐴 ∩ (𝐵 ∪ 𝐶)

Let 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶). By the definition of set union, 𝑥 ∈ (𝐴 ∩ 𝐵) or 𝑥 ∈ (𝐴 ∩ 𝐶). By
the definition of set intersection, (𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵) and (𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵). Using the same
propositional logical equivalence as in Lemma 0.1, this gives 𝑥 ∈ 𝐴 and (𝑥 ∈ 𝐵 or 𝑥 ∈ 𝐶).
Wrapping up, we use the definition of set union to get 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵 ∪ 𝐶 and the definition
of intersection to get 𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶).

Using Lemma 0.1 and 0.2, we get the desired equivalence of 𝐴∩ (𝐵 ∪𝐶) = (𝐴∩𝐵)∪ (𝐴∩𝐶).

b) This proof is so similar to a) that it feels like a waste of time and will therefore be left to
the reader.

Exercise 0.3.11

Prove by induction that 𝑛 < 2
𝑛 for all 𝑛 ∈ ℕ.

For this proof we will use induction. For this, we have to prove the base case, i.e. 𝑛 = 1, and
the inductive step, 𝑛 < 2

𝑛
⟹ 𝑛+ 1 < 2

𝑛+1.

First, let’s prove the base case. When 𝑛 = 1, we get 1 < 2
1, which is certainly true.

Then, for the inductive step. We assume that the proposition holds for any 𝑚 ∈ ℕ. So,
𝑚 < 2

𝑚. Multiplying both sides with 2 gives 2𝑚 < 2
𝑚+1. Since 𝑚 ≥ 1, 𝑚 + 1 < 2𝑚, and thus

𝑚 + 1 < 2𝑚 < 2
𝑚+1.

Since both the base case and inductive step hold, we can close the induction, proving the
proposition.
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Exercise 0.3.12

Show that for a finite set 𝐴 of cardinality 𝑛, the cardinality of (𝐴) is 2𝑛.

The power set of a set 𝐴, (𝐴), is defined as the set of all possible subsets of 𝐴. This is very
similar to an inclusion/exclusion problem. It is built up by all the possible combinations of
the different elements being either inside a certain subset or not. For all possible subsets of
𝐴, we have that for every element 𝑥 ∈ 𝐴 there are 2 possibilities, either 𝑥 is in the subset or
it isn’t. This means that for every additional element, the number of subsets increases by a
factor of 2, with a minimum of 1, in case of 𝐴 = ∅. We will prove this formally now, using
induction.

For this, the base case is a set of 1 element (but the theorem also holds for the empty set,
where 𝑛 = 0). Let us assume that 𝐴 ∶= {𝜋}. Then the cardinality of (𝐴) is 21, with (𝐴) =

{∅, {𝜋}}.

For the inductive step, we assume that for any set 𝐵 of cardinality 𝑚, the cardinality of the
power set of 𝐵 is 2𝑚. Then, we will add an element 𝑥 ∉ 𝐵 to 𝐵 to increase its cardinality by 1,
to 𝑚 + 1, creating a new set 𝐶. Note that all the possible subsets of 𝐵 are still viable subsets
of 𝐶, since 𝐵 ⊂ 𝐶. In order to create the new subsets, we can simply keep all the subsets
of 𝐵, duplicate them and take the union with the new element 𝑥 , so now we also have all
combinations of the old sets with possibly 𝑥 being in them. Since this doubles the number of
subsets, the cardinality of (𝐶) is 2𝑚+1.

Both the base case and the inductive step hold, which closes the induction and proves the
proposition.

Exercise 0.3.15

Prove that 𝑛3 + 5𝑛 is divisible by 6 for all 𝑛 ∈ ℕ.

In order to prove this proposition, we will use induction. To do this, we need to prove the
following lemma, of which we will see the usefulness later:

Lemma 0.3 — 3𝑛
2
+ 3𝑛 + 6 is divisible by 6 for all 𝑛 ∈ ℕ.

This lemma we will also prove by induction. For this, we prove the base case and the inductive
step. First, for the base case we have 𝑛 = 1, yielding 3 ⋅ 1

2
+ 3 ⋅ 1 + 6 = 12, which is divisibly by

6.

Then, for the inductive step we assume that the lemma holds for a certain 𝑚 ∈ ℕ. So,
3𝑚

2
+ 3𝑚+ 6 is divisible by 6. Substituting 𝑚 with 𝑚+ 1 gives 3(𝑚 + 1)

2
+ 3(𝑚 + 1) + 6, which

can be expanded to 3𝑚
2
+ 9𝑚 + 12. Rewriting this with our assumption in mind gives the

following: (3𝑚2
+ 3𝑚 + 6) + (6𝑚 + 6). We know from our assumption that the first part is

divisible by 6, and since 𝑚 ∈ ℕ, 6𝑚 + 6 is also divisible by 6, and so the whole expression is as
well.

Now for the original proposition. We will prove this by induction. First we prove the base case,
where 𝑛 = 1. Then, 13 + 5 ⋅ 1 = 6, which is definitely divisible by 6.
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For the inductive step, we assume that the proposition holds for a certain 𝑚 ∈ ℕ. So, 𝑚3
+ 5𝑚

is divisible by 6. When we increase 𝑚 by 1, we get: (𝑚 + 1)
3
+ 5(𝑚 + 1). Expanded, this is the

same as 𝑚3
+ 3𝑚

2
+ 8𝑚+ 6. When we rearrange the terms we can get the following expression:

(𝑚
3
+ 5𝑚) + (3𝑚

2
+ 3𝑚 + 6). From Lemma 0.3, we know that the latter part is divisible by 6.

The prior part is divisible by 6 because of the assumption of the inductive step. So together,
this expression is also divisible by 6.

Exercise 0.3.19

Give an example of a countably infinite collection of finite sets 𝐴1, 𝐴2, ..., whose union is
not a finite set.

The easiest example is simply the collection of singleton sets containing a natural number. So
each set 𝐴𝑖 ∶= {𝑖}∀𝑖 ∈ ℕ. Since ℕ is countably infinite, so the collection of sets. Each set is
definitely finite, because they all contain just one element. Finally, the union of the collection
of sets is equal to ℕ, which is not a finite set.

Exercise 1

a) Compute 𝑓 (4/15). Find 𝑞 such that 𝑓 (𝑞) = 108.
b) Use the Theorem to prove that 𝑓 is a bijection.

See the assignment PDF for the full assignment specification and theorem.

a) 4

15
, if written as a product of prime factors, is equal to 2

2

3
1
⋅5
1
. Since this fraction is not a natural

number, we have to use the second part of the definition of 𝑓 . So, 𝑓 (𝑞) = 2
2⋅2
⋅ 3

2⋅1−1
⋅ 5

2⋅1−1
= 240.

For the inverse of 𝑓 , it is still necessary to compute the factorization in prime numbers. Using
the powers of the primes we can deduce whether the prime present is, if applicable, part of
either the numerator or the denominator. 180 = 2

2
⋅ 3

2
⋅ 5

1. Because of the way 𝑓 is defined, we
know that all the prime factors with an even power are part of the numerator and all prime
factors with an odd power are part of the denominator (except 1, which just maps to itself).
When we backtrack using this information, we then get the following fraction: 2

1
⋅3
1

5
1

=
6

5
.

b) In order to prove that 𝑓 is a bijection, we have to prove that 𝑓 is injective and surjective.

Injectivity: We want to show that 𝑓 is 1-1, i.e. 𝑓 (𝑥1) = 𝑓 (𝑥2) ⟹ 𝑥1 = 𝑥2.

So, let’s assume that for any 𝑥1, 𝑥2 ∈ {𝑞 > 0 ∶ 𝑞 ∈ ℚ}, 𝑓 (𝑥1) = 𝑓 (𝑥2). Since the function
𝑓 has 3 parts, based on the input, we have to prove this statement for those 3 parts
separately as well. First, the easiest case, where the input set is {1}. Then, 𝑓 (𝑥) = 1∀𝑥 , so
𝑓 is injective.

For the case where 𝑥 ∈ ℕ\{1}, 𝑓 (𝑥) ∶= 𝑝
2𝑟1

1
⋅ ⋅ ⋅ 𝑝

2𝑟𝑁

𝑁
. We know from the Theorem that

any fraction can be uniquely written as a product of prime factors with exponents, so
when we assume 𝑓 (𝑥1) = 𝑓 (𝑥2), we can also assume that 𝑥1 and 𝑥2 have a unique prime
factorization associated with them. So let’s assume that 𝑓 (𝑥1) = 𝑓 (𝑥2). This means that
𝑝
2𝑟1

1
⋅ ⋅ ⋅ 𝑝

2𝑟𝑁

𝑁
= 𝑞

2𝑠1

1
⋅ ⋅ ⋅ 𝑞

2𝑠𝑀

𝑀
, where 𝑝

𝑟𝑖

𝑖
and 𝑞

𝑠𝑗

𝑗
denote the prime factors for both sides. We

can further expand this expression into:

4



𝑝
𝑟1

1
⋅ 𝑝

𝑟1

1
⋅ ⋅ ⋅ 𝑝

𝑟𝑁

𝑁
⋅ 𝑝

𝑟𝑁

𝑁
= 𝑞

𝑠1

1
⋅ 𝑞

𝑠1

1
⋅ ⋅ ⋅ 𝑞

𝑠𝑀

𝑀
⋅ 𝑞

𝑠𝑀

𝑀
⟹ (0.4)

𝑝
𝑟1

1
⋅ ⋅ ⋅ 𝑝

𝑟𝑁

𝑁
⋅ 𝑝

𝑟1

1
⋅ ⋅ ⋅ 𝑝

𝑟𝑁

𝑁
= 𝑞

𝑠1

1
⋅ ⋅ ⋅ 𝑞

𝑠1

𝑀
⋅ 𝑞

𝑠1

1
⋅ ⋅ ⋅ 𝑞

𝑠𝑀

𝑁
⟹ (0.5)

𝑥1 ⋅ 𝑥1 = 𝑥2 ⋅ 𝑥2 (0.6)

Because we know that each fraction constitutes a unique prime factorization, we also
know that 𝑥1 and 𝑥2 are uniquely derived. This is why the implications in the equation
above hold. Because both 𝑥1 and 𝑥2 > 0, 𝑥1 = 𝑥2.

Now for the case where 𝑥 ∈ ℚ\ℕ. Then 𝑓 (𝑥) ∶= 𝑝
2𝑟1

1
⋅ ⋅ ⋅ 𝑝

2𝑟𝑁

𝑁
𝑞
2𝑠1−1

1
⋅ ⋅ ⋅ 𝑞

2𝑠𝑀−1

𝑀
, using

the unique factorization derived from the Theorem. So again, we assume that for any
𝑥1, 𝑥2 ∈ ℚ\ℕ, 𝑓 (𝑥1) = 𝑓 (𝑥2). Using the definition of 𝑓 , we get: 𝑝2𝑟1

1
⋅ ⋅ ⋅ 𝑝

2𝑟𝑁

𝑁
𝑞
2𝑠1−1

1
⋅ ⋅ ⋅ 𝑞

2𝑠𝑀−1

𝑀
=

𝑣
2𝑡1

1
⋅ ⋅ ⋅ 𝑣

2𝑡𝑛

𝑛
𝑤

2𝑢1−1

1
⋅ ⋅ ⋅ 𝑤

2𝑢𝑚−1

𝑚
.1 Expanding this expression further, we get:

𝑝
2𝑟1

1

𝑝1

⋅ ⋅ ⋅

𝑝
2𝑟𝑁

𝑁

𝑝𝑁

𝑞
2𝑠1

1

𝑞1

⋅ ⋅ ⋅

𝑞
2𝑠𝑀

𝑀

𝑞𝑀

=

𝑣
2𝑡1

1

𝑣1

⋅ ⋅ ⋅

𝑣
2𝑡𝑛

𝑛

𝑣𝑛

𝑤
2𝑢1

1

𝑤1

⋅ ⋅ ⋅

𝑤
2𝑢𝑚

𝑚

𝑤𝑚

⟹ (0.7)

𝑝
𝑟1

1
⋅ 𝑝

𝑟1

1

𝑝1

⋅ ⋅ ⋅

𝑝
𝑟𝑁

𝑁
⋅ 𝑝

𝑟𝑁

𝑁

𝑝𝑁

𝑞
𝑠1

1
⋅ 𝑞

𝑠1

1

𝑞1

⋅ ⋅ ⋅

𝑞
𝑠𝑀

𝑀
⋅ 𝑞

𝑠𝑀

𝑀

𝑞𝑀

=

𝑣
𝑡1

1
⋅ 𝑣

𝑡1

1

𝑣1

⋅ ⋅ ⋅

𝑣
𝑡𝑛

𝑛
⋅ 𝑣

𝑡𝑛

𝑛

𝑣𝑛

𝑤
𝑢1

1
⋅ 𝑤

𝑢1

1

𝑤1

⋅ ⋅ ⋅

𝑤
𝑢𝑚

𝑚
⋅ 𝑤

𝑢𝑚

𝑚

𝑤𝑚

⟹

(0.8)
𝑥1 ⋅ 𝑥1

𝑝1 ⋅ ⋅ ⋅ 𝑝𝑁 ⋅ 𝑞1 ⋅ ⋅ ⋅ 𝑞𝑀

=

𝑥2 ⋅ 𝑥2

𝑣1 ⋅ ⋅ ⋅ 𝑣𝑛 ⋅ 𝑤1 ⋅ ⋅ ⋅ 𝑤𝑚

(0.9)

I’m kinda stuck at this point. I see that this is definitely injective, since the way the exponents
are defined, you will always know which prime factors belong to the numerator or to the
denominator. But I fail to prove this using the direct definition of 𝑓 like we could do for the
natural numbers. This is because the products of the denominators in the last equation are
not unique. So maybe I simplified them too much and shouldn’t try and write them in terms
of 𝑥1 and 𝑥2 like we did earlier, and try and focus more on just the exponents, but I feel it
becomes really hard to show that 𝑥1 = 𝑥2 that way.

Surjectivity: We want to show that 𝑓 is onto, i.e. 𝑓 ({𝑞 > 0 ∶ 𝑞 ∈ ℚ}) = ℕ.

In order to prove this, we will take an arbitrary 𝑦 ∈ ℕ, and show that ∃𝑥 ∶ 𝑓 (𝑥) = 𝑦.
We know from the Theorem that 𝑦 can be written as a product of unique prime factors,
𝑝
𝑟1

1
⋅ ⋅ ⋅ 𝑝

𝑟𝑁

𝑁
. From the definition of 𝑓 we know that if the exponents of the prime factors 𝑟

are even, they belong to the numerator of 𝑥 and if the exponents are odd, they belong
to the denominator of 𝑥 . If there are no prime factors with odd exponents, 𝑥 will be a
natural number. If 𝑦 = 1, 𝑥 = 1.

We will now only consider the case that 𝑦 is a prime factorization with factors with odd
exponents 2. Then, we can find 𝑥 in the following way: we multiply each prime factor
𝑝
2𝑟𝑖−1

𝑖
with 𝑝𝑖 and take the square root. We know that the square root of 𝑝2𝑟𝑖

𝑖
is defined,

since the exponent is multiplied by a factor 2, which the root negates. This will yield a
prime factorization that we will put in the denominator of a fraction. We do the same

1The super- and subscripts become a bit abracadabra, but I think everything is unique and readable this way.
2The case for a prime factorization with solely even exponents can be backtracked in a similar fashion, just

without the case for odd exponents and making 𝑥 a fraction.
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for the prime factors with even exponent, but without multiplying with 𝑝𝑖. The prime
factors we gain like that we put as a product in the numerator of the fraction. So, we
gain a fraction with both the numerator and the denominator consisting of products of
prime numbers, which are natural numbers, and so the fraction is positive and in fact a
fraction.
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Week 2

Exercise 1.1.1

Let 𝐹 be an ordered field and 𝑥, 𝑦, 𝑧 ∈ 𝐹 . If 𝑥 < 0 and 𝑦 < 𝑧, then 𝑥𝑦 > 𝑥𝑧.

So let’s assume the premise. 𝐹 is an ordered field and 𝑥, 𝑦, 𝑧 ∈ 𝐹 , and we choose 𝑥, 𝑦 and 𝑧 such
that 𝑥 < 0 and 𝑦 < 𝑧.

From 𝑥 < 0 it follows that (−𝑥) > 0. From 𝑦 < 𝑧 it follows that 0 < 𝑧−𝑦. From both of these, we
can conclude that 0 < (−𝑥)(𝑧 − 𝑦). Working out the right side with the distributive law, gives
0 < (−𝑥 ⋅ 𝑧) − (−𝑥 ⋅ 𝑦). Using −1 ⋅ −1 = 1, gives 0 < (−𝑥𝑧) − (−𝑥𝑦), thus 0 < 𝑥𝑦 − 𝑥𝑧. The right
part can be split again: 𝑥𝑧 < 𝑥𝑦. Then, the < can be flipped, which gives 𝑥𝑦 > 𝑥𝑧.

Exercise 1.1.2

Let 𝑆 be an ordered set. Let 𝐴 ⊂ 𝑆 be a non-empty finite subset. Then A is bounded.
Furthermore, inf𝐴 exists and in in 𝐴 and sup𝐴 exists and is in 𝐴.

In order to prove that 𝐴 is bounded, we have to prove that it has an upper and a lower bound.
Let us prove that 𝐴 is bounded above first.

In particular, we have to prove that ∃𝑎 ∈ 𝐴 such that 𝑥 ≤ 𝑏 for all 𝑥 ∈ 𝐸. Since 𝐴 is non-empty
and finite, we can use induction on the cardinality of 𝐴, since that will always be some natural
number 𝑛. So, we have to prove two cases: the base case, where |𝐴| = 1, and the inductive step,
where we will assume that when 𝐴 has an upper bound when it has cardinality 𝑚, then it also
has an upper bound when its cardinality is equal to 𝑚 + 1.

The base case is quite simple; if 𝐴 = {𝑥}, then 𝑥 is the greatest element and 𝐴 has an upper
bound. Now for the inductive step. We assume that for some set 𝐵 ⊂ 𝑆 with cardinality 𝑚, 𝐵 is
bounded above. Thus, there is some 𝑏 ∈ 𝐵 such that 𝑏 is greater than all other elements in 𝐵.
Now, let’s add a new element ℎ ∈ 𝑆 to 𝐵, such that ℎ is distinct from all elements already in 𝐵

and the cardinality of 𝐵 is now 𝑚 + 1. Then, since 𝑆 is well ordered, we can compare ℎ also to
𝑏. Either ℎ is greater than this 𝑏, in which case ℎ is the new greatest element, or it is less than
𝑏, in which case 𝑏 stays the greatest element of 𝐵. In both cases however, 𝐵 remains bounded
above.

A similar argument can be made to prove the existence of the lower bound, the supremum of
𝐴 in 𝐴 and the infimum of 𝐴 in 𝐴

3. This will be left to the reader.

Exercise 1.1.5

Let 𝑆 be an ordered set. Let 𝐴 ⊂ 𝑆 and suppose 𝑏 is an upper bound for 𝐴. Suppose 𝑏 ∈ 𝐴.
Show that 𝑏 = sup𝐴.

3It might even be that I have already proven that 𝐴 has a supremum present in 𝐴. Then that’s also good
enough to show that 𝐴 is bounded, since in order for 𝐴 to have a supremum, it must also be bounded.

7



So, let 𝑆 be an ordered set, with 𝐴 ⊂ 𝑆 and 𝑏 ∈ 𝐴 being an upper bound for 𝐴. Since 𝑏 is an
upper bound, 𝑎 ≤ 𝑏 for all 𝑎 ∈ 𝐴. Since 𝑏 ∈ 𝐴 as well, we know that there is some element in 𝐴

which is the greatest element of them all, and all other elements are smaller.

Now let’s assume that 𝑏 ≠ sup𝐴. Then either some other element of 𝐴 is the supremum,
which would imply that 𝑏 is not larger than this element, which is a contradiction. The other
possibility is that there is an element 𝑐 ∈ 𝑆\𝐴 that is the supremum. Because 𝑆 is ordered,
𝑐 must either be greater than, smaller than or equal to 𝑏. If 𝑐 < 𝑏, c is not an upper bound
of 𝐴 and thus also not its supremum. If 𝑐 > 𝑏, then 𝑏 is an upper bound that is smaller than
𝑐 and therefore 𝑐 cannot be the supremum. The only option left is that 𝑐 = 𝑏, and therefore
𝑏 = sup𝐴.

Exercise 1.1.6

Let 𝑆 be an ordered set. Let 𝐴 ⊂ 𝑆 be nonempty and bounded above. Suppose sup𝐴

exists and sup𝐴 ∉ 𝐴. Show that 𝐴 contains a countably infinite subset.

Let 𝑆 be an ordered set, with 𝐴 ⊂ 𝑆 nonempty and bounded above. We assume that 𝑏 = sup𝐴

exists and 𝑏 ∉ 𝐴 ( ⟹ 𝑏 ∈ 𝑆\𝐴). We are asked to show this then implies that ∃𝑋 ⊂ 𝐴 such
that |𝑋 | ≥ |ℕ|. We will prove this with a proof by contradiction.

We assume that no such set 𝑋 exists, i.e. |𝑋 | < |ℕ|. So, 𝐴 also doesn’t have to countably infinite
anymore. Since 𝑏 ∉ 𝐴 and 𝐴 is ordered, finite and nonempty, there is a greatest element 𝑎 ∈ 𝐴

such that 𝑎 < 𝑏 and 𝑥 < 𝑎 ∀𝑥 ∈ 𝐴. So 𝑏 is in fact not the least upper bound of 𝐴, which is in
contradiction with our assumption earlier. Ergo, |𝑋 | ≥ |ℕ|. Since 𝑋 then is at least of the same
cardinality as ℕ, it must also contain a countably infinite subset.

Exercise 1.2.7

Prove the arithmetic-geometric mean inequality. That is, for two positive real numbers
𝑥, 𝑦, we have

√
𝑥𝑦 ≤

𝑥 + 𝑦

2

.

Furthermore, equality occurs if and only if 𝑥 = 𝑦.

Let us prove the first statement first. So we let 𝑥, 𝑦 ∈ ℝ such that 𝑥, 𝑦 > 0. Then we will prove
the statement by contradiction. Hence, we assume that

√
𝑥𝑦 >

𝑥 + 𝑦

2

.

We can multiply both sides with 2. This results in 2
√
𝑥𝑦 > 𝑥 + 𝑦. We can pull the left part into

the right, so we get 0 > 𝑥 − 2
√
𝑥𝑦 + 𝑦. We can restructure the right side to 0 > (

√

𝑥 −
√
𝑦)

2.
We know that 0 ≤ 𝑧

2, ∀𝑧 ∈ ℝ, so this is a contradiction.

Now to prove the second statement. We assume 𝑥 = 𝑦 is a positive real number. Then,

√
𝑥𝑦 =

√

𝑥
2
= 𝑥 =

2𝑥

2

=

𝑥 + 𝑦

2

.
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Exercise 1.2.9

Let 𝐴 and 𝐵 be two nonempty bounded sets of real numbers. Define the set 𝐶 ∶= {𝑎+𝑏 ∶

𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Show that 𝐶 is a bounded set and that

sup 𝐶 = sup𝐴 + sup 𝐵 and
inf 𝐶 = inf 𝐴 + inf 𝐵.

First, let us show that 𝐶 is a bounded set. Since 𝐴 and 𝐵 are both subsets of ℝ, which is an
ordered field, all elements of 𝐶 must also be real numbers. Let 𝑎 be an upper bound for 𝐴 and
𝑏 be an upper bound for 𝐵. So 𝑥 ≤ 𝑎 ∀𝑥 ∈ 𝐴 and 𝑦 ≤ 𝑏 ∀𝑦 ∈ 𝐵. Since 𝐶 is defined as the sum of
any element in 𝐴 with any element in 𝐵, an upper bound of 𝐶, 𝑐, can be found as 𝑐 ≤ 𝑎 + 𝑏. A
similar argument can be made for the lower bound of 𝐶, which makes 𝐶 bounded.

To prove that sup 𝐶 = sup𝐴 + sup 𝐵, we will show that sup 𝐶 ≥ sup𝐴 + sup 𝐵 and sup 𝐶 ≤

sup𝐴 + sup 𝐵.

Let 𝑎 = sup𝐴 and 𝑏 = sup 𝐵. So 𝑥 ≤ 𝑎 for all 𝑥 ∈ 𝐴 and 𝑦 ≤ 𝑏 for all 𝑦 ∈ 𝐵. Then, 𝑥 + 𝑦 ≤ 𝑎 + 𝑏.
Since 𝑧 ≤ 𝑥 + 𝑦 for all 𝑧 ∈ 𝐶 because of the definition of 𝐶, 𝑧 ≤ 𝑎 + 𝑏. In other words,
sup 𝐶 ≤ sup𝐴 + sup 𝐵.

Now to prove the other direction. Let 𝑐 = sup 𝐶. So 𝑧 ≤ 𝑐 for all 𝑐 ∈ 𝐶. Since all elements
in 𝐶 are the sum of an element 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, 𝑥 + 𝑦 ≤ 𝑐 for all 𝑥, 𝑦. The least upper
bound for these 𝑥 and 𝑦 can be given by the supremum; 𝑥 ≤ sup𝐴 and 𝑦 ≤ sup 𝐵. So,
sup𝐴 + sup 𝐵 ≤ 𝑐 ⟹ sup𝐴 + sup 𝐵 ≤ sup 𝐶, completing the equality.

A similar argument can be given for the infimum, which is left to the reader.
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