
Week 2

Exercise 1.1.1

Let 𝐹 be an ordered field and 𝑥, 𝑦, 𝑧 ∈ 𝐹 . If 𝑥 < 0 and 𝑦 < 𝑧, then 𝑥𝑦 > 𝑥𝑧.

So let’s assume the premise. 𝐹 is an ordered field and 𝑥, 𝑦, 𝑧 ∈ 𝐹 , and we choose 𝑥, 𝑦 and 𝑧 such
that 𝑥 < 0 and 𝑦 < 𝑧.

From 𝑥 < 0 it follows that (−𝑥) > 0. From 𝑦 < 𝑧 it follows that 0 < 𝑧−𝑦. From both of these, we
can conclude that 0 < (−𝑥)(𝑧 − 𝑦). Working out the right side with the distributive law, gives
0 < (−𝑥 ⋅ 𝑧) − (−𝑥 ⋅ 𝑦). Using −1 ⋅ −1 = 1, gives 0 < (−𝑥𝑧) − (−𝑥𝑦), thus 0 < 𝑥𝑦 − 𝑥𝑧. The right
part can be split again: 𝑥𝑧 < 𝑥𝑦. Then, the < can be flipped, which gives 𝑥𝑦 > 𝑥𝑧.

Exercise 1.1.2

Let 𝑆 be an ordered set. Let 𝐴 ⊂ 𝑆 be a non-empty finite subset. Then A is bounded.
Furthermore, inf𝐴 exists and in in 𝐴 and sup𝐴 exists and is in 𝐴.

In order to prove that 𝐴 is bounded, we have to prove that it has an upper and a lower bound.
Let us prove that 𝐴 is bounded above first.

In particular, we have to prove that ∃𝑎 ∈ 𝐴 such that 𝑥 ≤ 𝑏 for all 𝑥 ∈ 𝐸. Since 𝐴 is non-empty
and finite, we can use induction on the cardinality of 𝐴, since that will always be some natural
number 𝑛. So, we have to prove two cases: the base case, where |𝐴| = 1, and the inductive step,
where we will assume that when 𝐴 has an upper bound when it has cardinality 𝑚, then it also
has an upper bound when its cardinality is equal to 𝑚 + 1.

The base case is quite simple; if 𝐴 = {𝑥}, then 𝑥 is the greatest element and 𝐴 has an upper
bound. Now for the inductive step. We assume that for some set 𝐵 ⊂ 𝑆 with cardinality 𝑚, 𝐵 is
bounded above. Thus, there is some 𝑏 ∈ 𝐵 such that 𝑏 is greater than all other elements in 𝐵.
Now, let’s add a new element ℎ ∈ 𝑆 to 𝐵, such that ℎ is distinct from all elements already in 𝐵
and the cardinality of 𝐵 is now 𝑚 + 1. Then, since 𝑆 is well ordered, we can compare ℎ also to
𝑏. Either ℎ is greater than this 𝑏, in which case ℎ is the new greatest element, or it is less than
𝑏, in which case 𝑏 stays the greatest element of 𝐵. In both cases however, 𝐵 remains bounded
above.

A similar argument can be made to prove the existence of the lower bound, the supremum of
𝐴 in 𝐴 and the infimum of 𝐴 in 𝐴 1. This will be left to the reader.

Exercise 1.1.5

Let 𝑆 be an ordered set. Let 𝐴 ⊂ 𝑆 and suppose 𝑏 is an upper bound for 𝐴. Suppose 𝑏 ∈ 𝐴.
Show that 𝑏 = sup𝐴.

1It might even be that I have already proven that 𝐴 has a supremum present in 𝐴. Then that’s also good
enough to show that 𝐴 is bounded, since in order for 𝐴 to have a supremum, it must also be bounded.
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So, let 𝑆 be an ordered set, with 𝐴 ⊂ 𝑆 and 𝑏 ∈ 𝐴 being an upper bound for 𝐴. Since 𝑏 is an
upper bound, 𝑎 ≤ 𝑏 for all 𝑎 ∈ 𝐴. Since 𝑏 ∈ 𝐴 as well, we know that there is some element in 𝐴
which is the greatest element of them all, and all other elements are smaller.

Now let’s assume that 𝑏 ≠ sup𝐴. Then either some other element of 𝐴 is the supremum,
which would imply that 𝑏 is not larger than this element, which is a contradiction. The other
possibility is that there is an element 𝑐 ∈ 𝑆\𝐴 that is the supremum. Because 𝑆 is ordered,
𝑐 must either be greater than, smaller than or equal to 𝑏. If 𝑐 < 𝑏, c is not an upper bound
of 𝐴 and thus also not its supremum. If 𝑐 > 𝑏, then 𝑏 is an upper bound that is smaller than
𝑐 and therefore 𝑐 cannot be the supremum. The only option left is that 𝑐 = 𝑏, and therefore
𝑏 = sup𝐴.

Exercise 1.1.6

Let 𝑆 be an ordered set. Let 𝐴 ⊂ 𝑆 be nonempty and bounded above. Suppose sup𝐴
exists and sup𝐴 ∉ 𝐴. Show that 𝐴 contains a countably infinite subset.

Let 𝑆 be an ordered set, with 𝐴 ⊂ 𝑆 nonempty and bounded above. We assume that 𝑏 = sup𝐴
exists and 𝑏 ∉ 𝐴 ( ⟹ 𝑏 ∈ 𝑆\𝐴). We are asked to show this then implies that ∃𝑋 ⊂ 𝐴 such
that |𝑋 | ≥ |ℕ|. We will prove this with a proof by contradiction.

We assume that no such set 𝑋 exists, i.e. |𝑋 | < |ℕ|. So, 𝐴 also doesn’t have to countably infinite
anymore. Since 𝑏 ∉ 𝐴 and 𝐴 is ordered, finite and nonempty, there is a greatest element 𝑎 ∈ 𝐴
such that 𝑎 < 𝑏 and 𝑥 < 𝑎 ∀𝑥 ∈ 𝐴. So 𝑏 is in fact not the least upper bound of 𝐴, which is in
contradiction with our assumption earlier. Ergo, |𝑋 | ≥ |ℕ|. Since 𝑋 then is at least of the same
cardinality as ℕ, it must also contain a countably infinite subset.

Exercise 1.2.7

Prove the arithmetic-geometric mean inequality. That is, for two positive real numbers
𝑥, 𝑦, we have

√𝑥𝑦 ≤
𝑥 + 𝑦
2

.

Furthermore, equality occurs if and only if 𝑥 = 𝑦.

Let us prove the first statement first. So we let 𝑥, 𝑦 ∈ ℝ such that 𝑥, 𝑦 > 0. Then we will prove
the statement by contradiction. Hence, we assume that

√𝑥𝑦 >
𝑥 + 𝑦
2

.

We can multiply both sides with 2. This results in 2√𝑥𝑦 > 𝑥 + 𝑦. We can pull the left part into
the right, so we get 0 > 𝑥 − 2√𝑥𝑦 + 𝑦. We can restructure the right side to 0 > (

√
𝑥 − √𝑦)2.

We know that 0 ≤ 𝑧2, ∀𝑧 ∈ ℝ, so this is a contradiction.

Now to prove the second statement. We assume 𝑥 = 𝑦 is a positive real number. Then,

√𝑥𝑦 =
√
𝑥2 = 𝑥 =

2𝑥
2

=
𝑥 + 𝑦
2

.
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Exercise 1.2.9

Let 𝐴 and 𝐵 be two nonempty bounded sets of real numbers. Define the set 𝐶 ∶= {𝑎+𝑏 ∶
𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}. Show that 𝐶 is a bounded set and that

sup 𝐶 = sup𝐴 + sup 𝐵 and
inf 𝐶 = inf 𝐴 + inf 𝐵.

First, let us show that 𝐶 is a bounded set. Since 𝐴 and 𝐵 are both subsets of ℝ, which is an
ordered field, all elements of 𝐶 must also be real numbers. Let 𝑎 be an upper bound for 𝐴 and
𝑏 be an upper bound for 𝐵. So 𝑥 ≤ 𝑎 ∀𝑥 ∈ 𝐴 and 𝑦 ≤ 𝑏 ∀𝑦 ∈ 𝐵. Since 𝐶 is defined as the sum of
any element in 𝐴 with any element in 𝐵, an upper bound of 𝐶, 𝑐, can be found as 𝑐 ≤ 𝑎 + 𝑏. A
similar argument can be made for the lower bound of 𝐶, which makes 𝐶 bounded.

To prove that sup 𝐶 = sup𝐴 + sup 𝐵, we will show that sup 𝐶 ≥ sup𝐴 + sup 𝐵 and sup 𝐶 ≤
sup𝐴 + sup 𝐵.

Let 𝑎 = sup𝐴 and 𝑏 = sup 𝐵. So 𝑥 ≤ 𝑎 for all 𝑥 ∈ 𝐴 and 𝑦 ≤ 𝑏 for all 𝑦 ∈ 𝐵. Then, 𝑥 + 𝑦 ≤ 𝑎 + 𝑏.
Since 𝑧 ≤ 𝑥 + 𝑦 for all 𝑧 ∈ 𝐶 because of the definition of 𝐶, 𝑧 ≤ 𝑎 + 𝑏. In other words,
sup 𝐶 ≤ sup𝐴 + sup 𝐵.

Now to prove the other direction. Let 𝑐 = sup 𝐶. So 𝑧 ≤ 𝑐 for all 𝑐 ∈ 𝐶. Since all elements
in 𝐶 are the sum of an element 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, 𝑥 + 𝑦 ≤ 𝑐 for all 𝑥, 𝑦. The least upper
bound for these 𝑥 and 𝑦 can be given by the supremum; 𝑥 ≤ sup𝐴 and 𝑦 ≤ sup 𝐵. So,
sup𝐴 + sup 𝐵 ≤ 𝑐 ⟹ sup𝐴 + sup 𝐵 ≤ sup 𝐶, completing the equality.

A similar argument can be given for the infimum, which is left to the reader.

Exercise 7

Let
𝐸 = {𝑥 ∈ ℝ ∶ 𝑥 > 0 and 𝑥3 < 2}.

a) Prove that 𝐸 is bounded above.
b) Let 𝑟 = sup 𝐸 (which exists by part a)). Prove that 𝑟 > 0 and 𝑟3 = 2.

Hint: Adapt the proof used in Example 1.2.3.

So, let 𝐸 and 𝑟 be defined as in the exercise statement. Then:

a) 𝑥 ≤ 2 is an upper bound for 𝐸, as 2 ⋅ 2 ⋅ 2 = 8. So, 𝐸 is bounded above.

b) As 1 ∈ 𝐸, 𝑟 ≥ 1 > 0, so the first part of the statement holds. In order to show that 𝑟3 = 2,
we want to show that 𝑟3 ≤ 2 and 𝑟3 ≥ 2 hold.

First, let’s show that 𝑟3 ≥ 2. We will take a similar approach as in Example 1.2.3 from
the textbook. So, take a positive number 𝑠 such that 𝑠3 < 2. We wish to find an ℎ > 0
such that (𝑠 + ℎ)3 < 2. As 2 − 𝑠3 > 0, we have 2−𝑠3

3𝑠2+3𝑠+1 > 0. Choose an ℎ ∈ ℝ such that
0 < ℎ < 2−𝑠3

3𝑠2+3𝑠+1 . Furthermore, assume ℎ < 1. Estimate,
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(𝑠 + ℎ)3 − 𝑠3 = ℎ(3𝑠2 + 3𝑠ℎ + ℎ2)
< ℎ(3𝑠2 + 3𝑠 + 1) (since ℎ < 1)

< 2 − 𝑠3 (since ℎ <
2 − 𝑠3

3𝑠2 + 3𝑠 + 1
).

Therefore, (𝑠 +ℎ)3 < 2. Hence 𝑠 +ℎ ∈ 𝐸, but as ℎ > 0, we have 𝑠 +ℎ > 𝑠. So 𝑠 < 𝑟 = sup 𝐸.
As 𝑠 was an arbitrary positive number such that 𝑠3 < 2, it follows that 𝑟3 ≥ 2.

Now take an arbitrary positive number 𝑠 such that 𝑠3 > 2. We wish to find an ℎ > 0 such
that (𝑠 − ℎ)3 > 2 and 𝑠 − ℎ is still positive. As 𝑠3 − 2 > 0, we have that 𝑠3−2

3𝑠2+1 > 0. Let
ℎ ∶= 𝑠3−2

3𝑠2+1 , and check that 𝑠 − ℎ = 𝑠 − 𝑠3−2
3𝑠2+1 =

2𝑠3+𝑠+2
3𝑠2+1 > 0. Assume that ℎ < 1. Estimate,

𝑠3 − (𝑠 − ℎ)3 = ℎ(3𝑠2 − 3𝑠ℎ + ℎ2)
< ℎ(3𝑠2 + ℎ2) (since 𝑠 > 0 and ℎ > 0)
< ℎ(3𝑠2 + 1) (since ℎ < 1)
= 𝑠3 − 2 (because of the definition of ℎ).

By subtracting 𝑠3 from both sides and multiplying by -1, we find (𝑠 − ℎ)3 > 2. Therefore,
𝑠 − ℎ ∉ 𝐸. Moreover, if 𝑥 ≥ 𝑠 − ℎ, then 𝑥3 ≥ (𝑠 − ℎ)3 > 2 (as 𝑥 > 0 and 𝑠 − ℎ > 0) and
so 𝑥 ∉ 𝐸. Thus, 𝑠 − ℎ is an upper bound for 𝐸. However, 𝑠 − ℎ < 𝑠, or in other words,
𝑠 > 𝑟 = sup 𝐸. Hence, 𝑟3 ≤ 2.

Together, 𝑟3 ≥ 2 and 𝑟3 ≤ 2 imply 𝑟3 = 3.
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