Week 2

Exercise 1.1.1

Let F be an ordered field and x, y,z € F. If x < 0 and y < z, then xy > xz.

So let’s assume the premise. F is an ordered field and x, y, z € F, and we choose x, y and z such
that x <0and y < z.

From x < 0 it follows that (—x) > 0. From y < z it follows that 0 < z—y. From both of these, we
can conclude that 0 < (—x)(z — y). Working out the right side with the distributive law, gives
0<(—x-z)—(—x-y). Using —1-—1 = 1, gives 0 < (—xz) — (—xy), thus 0 < xy — xz. The right
part can be split again: xz < xy. Then, the < can be flipped, which gives xy > xz. [

Exercise 1.1.2

Let S be an ordered set. Let A C S be a non-empty finite subset. Then A is bounded.
Furthermore, infA exists and in in A and sup A exists and is in A.

In order to prove that A is bounded, we have to prove that it has an upper and a lower bound.
Let us prove that A is bounded above first.

In particular, we have to prove that 3a € A such that x < b for all x € E. Since A is non-empty
and finite, we can use induction on the cardinality of A, since that will always be some natural
number n. So, we have to prove two cases: the base case, where |A| = 1, and the inductive step,
where we will assume that when A has an upper bound when it has cardinality m, then it also
has an upper bound when its cardinality is equal to m + 1.

The base case is quite simple; if A = {x}, then x is the greatest element and A has an upper
bound. Now for the inductive step. We assume that for some set B C S with cardinality m, B is
bounded above. Thus, there is some b € B such that b is greater than all other elements in B.
Now, let’s add a new element h € S to B, such that h is distinct from all elements already in B
and the cardinality of B is now m + 1. Then, since S is well ordered, we can compare h also to
b. Either h is greater than this b, in which case h is the new greatest element, or it is less than
b, in which case b stays the greatest element of B. In both cases however, B remains bounded
above. O

A similar argument can be made to prove the existence of the lower bound, the supremum of
Ain A and the infimum of A in A '. This will be left to the reader.

Exercise 1.1.5

Let S be an ordered set. Let A C S and suppose b is an upper bound for A. Suppose b € A.
Show that b = sup A.

Tt might even be that I have already proven that A has a supremum present in A. Then that’s also good
enough to show that A is bounded, since in order for A to have a supremum, it must also be bounded.



So, let S be an ordered set, with A C S and b € A being an upper bound for A. Since b is an
upper bound, a < b for all a € A. Since b € A as well, we know that there is some element in A
which is the greatest element of them all, and all other elements are smaller.

Now let’s assume that b # sup A. Then either some other element of A is the supremum,
which would imply that b is not larger than this element, which is a contradiction. The other
possibility is that there is an element ¢ € S\ A that is the supremum. Because S is ordered,
c must either be greater than, smaller than or equal to b. If ¢ < b, ¢ is not an upper bound
of A and thus also not its supremum. If ¢ > b, then b is an upper bound that is smaller than
c and therefore ¢ cannot be the supremum. The only option left is that ¢ = b, and therefore
b = sup A. [

Exercise 1.1.6

Let S be an ordered set. Let A C S be nonempty and bounded above. Suppose sup A
exists and sup A ¢ A. Show that A contains a countably infinite subset.

Let S be an ordered set, with A C S nonempty and bounded above. We assume that b = sup A
existsand b ¢ A( = b € S\ A). We are asked to show this then implies that 3X C A such
that | X| > |IN|. We will prove this with a proof by contradiction.

We assume that no such set X exists, i.e. |X| < [IN|. So, A also doesn’t have to countably infinite
anymore. Since b ¢ A and A is ordered, finite and nonempty, there is a greatest elementa € A
such that a < b and x < a Vx € A. So b is in fact not the least upper bound of A, which is in
contradiction with our assumption earlier. Ergo, | X| > |IN|. Since X then is at least of the same
cardinality as IN, it must also contain a countably infinite subset. ]

Exercise 1.2.7

Prove the arithmetic-geometric mean inequality. That is, for two positive real numbers

x,y, we have
x+y

VY < .

Furthermore, equality occurs if and only if x = y.

Let us prove the first statement first. So we let x, y € R such that x, y > 0. Then we will prove
the statement by contradiction. Hence, we assume that

x+y

Fwy> Y

2

We can multiply both sides with 2. This results in 2 /xy > x + y. We can pull the left part into
the right, so we get 0 > x — 2 /xy + y. We can restructure the right side to 0 > ({x — /7).
We know that 0 < z?%, Vz € R, so this is a contradiction. O]

Now to prove the second statement. We assume x = y is a positive real number. Then,

2x  x+y

m:JF:x:?: o O



Exercise 1.2.9

Let A and B be two nonempty bounded sets of real numbers. Define the set C :={a+b :
a € A, b € B}. Show that C is a bounded set and that

sup C = sup A + sup B and
inf C = inf A + inf B.

.

First, let us show that C is a bounded set. Since A and B are both subsets of R, which is an
ordered field, all elements of C must also be real numbers. Let a be an upper bound for A and
b be an upper bound for B. So x < a Vx € Aand y < b Vy € B. Since C is defined as the sum of
any element in A with any element in B, an upper bound of C, ¢, can be found asc < a+b. A
similar argument can be made for the lower bound of C, which makes C bounded. []

To prove that sup C = sup A + sup B, we will show that supC > sup A + sup B and supC <
sup A + sup B.

Leta=supAandb =supB.Sox <aforallx € Aandy <bforall y € B. Then,x+y <a+b.
Since z < x + y for all z € C because of the definition of C, z < a + b. In other words,
sup C < sup A + sup B.

Now to prove the other direction. Let ¢ = supC. So z < ¢ for all ¢ € C. Since all elements
in C are the sum of an element x € Aand y € B, x + y < ¢ for all x,y. The least upper
bound for these x and y can be given by the supremum; x < sup A and y < supB. So,

supA+supB <c = sup A+ supB < supC, completing the equality. [

A similar argument can be given for the infimum, which is left to the reader.

Exercise 7

Let
E={xeR:x>0andx® < 2L

a) Prove that E is bounded above.
b) Letr = sup E (which exists by part a)). Prove that r > 0 and r* = 2.
Hint: Adapt the proof used in Example 1.2.3.

So, let E and r be defined as in the exercise statement. Then:
a) x < 2 is an upper bound for E, as 2- 2 - 2 = 8. So, E is bounded above.

b) As1€ E,r > 1> 0, so the first part of the statement holds. In order to show that r* = 2,
we want to show that r*> < 2 and r* > 2 hold.

First, let’s show that r* > 2. We will take a similar approach as in Example 1.2.3 from
the textbook. So, take a positive number s such that s* < 2. We wish to find an h > 0
such that (s + h)* < 2. As 2 —s* > 0, we have —2>— > 0. Choose an & € R such that

3s2+3s+1

0<h< % Furthermore, assume h < 1. Estimate,



(s+h)’ —s* = h(3s* + 3sh + h*)

< h(3s* +3s+1) (since h < 1)
2-5s°
<2-¢ (sinceh < —————).
3s2+3s+1

Therefore, (s + h)* < 2. Hence s+h € E,butash > 0, we have s+ h > s. Sos <r = supE.
As s was an arbitrary positive number such that s*> < 2, it follows that r* > 2.

Now take an arbitrary positive number s such that s*> > 2. We wish to find an h > 0 such

that (s — h)* > 2 and s — h is still positive. As s*> — 2 > 0, we have that 33532121 > 0. Let

L -2 _ $-2 _ 253+s+2 .
h:= STt and check thats—h =s— 37 = Ser > 0. Assume that h < 1. Estimate,

s —(s—h)® = h(3s* — 3sh + h?)

< h(3s* + h%) (since s >0 and h > 0)
< h(3s* + 1) (since h < 1)
=5 -2 (because of the definition of h).

By subtracting s® from both sides and multiplying by -1, we find (s — h)* > 2. Therefore,
s—h ¢ E. Moreover, if x > s—h,then x> > (s —h)* >2(asx > 0and s —h > 0) and
so x ¢ E. Thus, s — h is an upper bound for E. However, s — h < s, or in other words,
s >r = sup E. Hence, r* < 2.

Together, r* > 2 and r* < 2 imply r* = 3. O
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