

Week 2

Exercise 1.1.1

Prove:

Let F be an ordered field and $x, y, z \in F$. If $x < 0$ and $y < z$, then $xy > xz$.

So let's assume the premise. F is an ordered field and $x, y, z \in F$, and we choose x, y and z such that $x < 0$ and $y < z$.

From $x < 0$ it follows that $(-x) > 0$. From $y < z$ it follows that $0 < z - y$. From both of these, we can conclude that $0 < (-x)(z - y)$. Working out the right side with the distributive law, gives $0 < (-x \cdot z) - (-x \cdot y)$. Using $-1 \cdot -1 = 1$, gives $0 < (-xz) - (-xy)$, thus $0 < xy - xz$. The right part can be split again: $xz < xy$. Then, the $<$ -operator can be flipped, which gives $xy > xz$. \square