

Week 1

Exercise 0.3.6

Prove:

- a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- b) $A \cup (B \cap C) = (A \cup B) \cap (a \cup C)$

a) In order to prove this equivalence, we have to prove the implication both ways. We use two lemmas for this.

Lemma 1.1 — $A \cap (B \cup C) \implies (A \cap B) \cup (A \cap C)$

Let $x \in A \cap (B \cup C)$. By the definition of set intersection, $x \in A$ and $x \in B \cup C$. By the definition of set union, $x \in A$ and $(x \in B \text{ or } x \in C)$. From propositional logic we know that for propositions P, Q and R the following holds: $P \wedge (Q \vee R) \iff (P \wedge Q) \vee (P \wedge R)$. So, substituting for this particular case yields $(x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)$. Using the definition of set intersection again gets $x \in A \cap B$ or $x \in A \cap C$. Using the definition of set union again gives $x \in (A \cap B) \cup (A \cap C)$. \square

Lemma 1.2 — $(A \cap B) \cup (A \cap C) \implies A \cap (B \cup C)$

Let $x \in (A \cap B) \cup (A \cap C)$. By the definition of set union, $x \in (A \cap B)$ or $x \in (A \cap C)$. By the definition of set intersection, $(x \in A \text{ or } x \in B)$ and $(x \in A \text{ or } x \in C)$. Using the same propositional logical equivalence as in Lemma 1.1, this gives $x \in A$ and $(x \in B \text{ or } x \in C)$. Wrapping up, we use the definition of set union to get $x \in A$ and $x \in B \cup C$ and the definition of intersection to get $x \in A \cap (B \cup C)$. \square

Using Lemma 1.1 and 1.2, we get the desired equivalence of $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. \square

b) This proof is so similar to a) that it feels like a waste of time and will therefore be left to the reader.

Exercise 0.3.11

Prove by induction that $n < 2^n$ for all $n \in \mathbb{N}$.

For this proof we will use induction. For this, we have to prove the base case, i.e. $n = 1$, and the inductive step, $n < 2^n \implies n + 1 < 2^{n+1}$.

First, let's prove the base case. When $n = 1$, we get $1 < 2^1$, which is certainly true.

Then, for the inductive step. We assume that the proposition holds for any $m \in \mathbb{N}$. So, $m < 2^m$. Multiplying both sides with 2 gives $2m < 2^{m+1}$. Since $m \geq 1$, $m + 1 < 2m$, and thus $m + 1 < 2m < 2^{m+1}$.

Since both the base case and inductive step hold, we can close the induction, proving the proposition. \square

Exercise 0.3.12

Show that for a finite set A of cardinality n , the cardinality of $\mathcal{P}(A)$ is 2^n .

The power set of a set A , $\mathcal{P}(A)$, is defined as the set of all possible subsets of A . This is very similar to an inclusion/exclusion problem. It is built up by all the possible combinations of the different elements being either inside a certain subset or not. For all possible subsets of A , we have that for every element $x \in A$ there are 2 possibilities, either x is in the subset or it isn't. This means that for every additional element, the number of subsets increases by a factor of 2, with a minimum of 1, in case of $A = \emptyset$. We will prove this formally now, using induction.

For this, the base case is a set of 1 element (but the theorem also holds for the empty set, where $n = 0$). Let us assume that $A := \{\pi\}$. Then the cardinality of $\mathcal{P}(A)$ is 2^1 , with $\mathcal{P}(A) = \{\emptyset, \{\pi\}\}$.

For the inductive step, we assume that for any set B of cardinality m , the cardinality of the power set of B is 2^m . Then, we will add an element $x \notin B$ to B to increase its cardinality by 1, to $m + 1$, creating a new set C . Note that all the possible subsets of B are still viable subsets of C , since $B \subset C$. In order to create the new subsets, we can simply keep all the subsets of B , duplicate them and take the union with the new element x , so now we also have all combinations of the old sets with possibly x being in them. Since this doubles the number of subsets, the cardinality of $\mathcal{P}(C)$ is 2^{m+1} .

Both the base case and the inductive step hold, which closes the induction and proves the proposition. \square