Part I

Assignment 3

Exercise 1

[ Suppose x,y € R and x < y. Prove that there exists i € R\Q such that x <i < y.

If either x or y (or both) are not rational numbers, we can simply take the average like so: %,
in a similar way we did for the rationals. Since x or y isn’t rational, the resulting fraction will

also not be a rational and this proves the statement.

Now if x,y € Q, we cannot use this average trick, because the resulting fraction will be a
rational itself and so it doesn’t satisfy the restriction that it must be in R\Q. So we have to
take a different approach.

xX+y

Let x,y € Qwithx < yandm := =%, sox <m < y. Then,let X ={a € R : x <a <m}
andletY ={b € R : m < b < y}. Since x < m and m < y, these are nonempty and they are
bounded, because of the restrictions x < a < mand m < b < y. So, there exists k € X, that is
not rational such that x < k < m and there exists h € Y that is not rational such that m < h < y.
Pick either k or h as i, since x <k <m < h < y. O

Exercise 2

Let E C (0,1) be the set of all real numbers with decimal representation using only the
digits 1 and 2:

E :={x€(0,1) : Vj € N,3d; € {1, 2} such that x = 0.dd,...}

Prove that |E| = [P(IN)|.

As a hint to this exercise: Consider the function f : E — P(N) such that if x € E,x =
0.d,ds...,
f(x)={jeN:d =2}

In order to prove that 2 sets are of equal cardinality, we need to prove that there is a bijective
function between the 2 sets. In this case, the aforementioned hint function does the trick.
Non-formally speaking, it is exactly what we are looking for: it is a (weird) representation of
the power set of natural numbers, in that for every decimal, represented by a natural number,
it is decided if that decimal is a 2 or a 1. This is similar to the actual power set of the natural
numbers, in which for every natural number it is decided whether the number is in a subset or
not.

Now for a formal proof. To show that f is bijective, we need to show that it is surjective and
injective.

Injectivity of f In order to show that f is injective, we have to show that for every x € E,
there is a unique y € P(IN) for the function, by showing that f(a) = f(b) = a =0.



So, let’s assume that for some a,b € E, f(a) = f(b). So, there two sets of natural numbers
{a,, ay, ..., a,} = {b1, by, ..., by, }. Equality in sets means that every element that is present
in the one set, is present in the other, and vice versa. No element that is present in either
set, is missing in the other. So, in this case, both sets will represent the same sequence of
digits that are 2. Because the only other option for digits is 1, that means the complete
digital representation of a and b are known, unique and the same. This concludes the
proof for injectivity.

Surjectivity of f To prove surjectivity, we need to prove that for any arbitrary y € P(IN),

there exists a corresponding x € E such that f(x) = y.

So, take an arbitrary y = {y;, s, ..., yn}, where each y; € N and thus y € P(IN). Then,
corresponding x € E can be constructed easily as follows. Take a decimal number 0.d,d,...
and turn every decimal d; for which i € y into a 2, and every other decimal into a 1. Since
every decimal can only be a 1 or 2, this handles every decimal correctly. Also, f(x) will
be in P(IN).

Since, f is 1-to-1 and onto, f is bijective. Then, because there exists a bijective function from
E to P(N), |E| = [P(IN))|. O

Exercise 3

(a) Let A and B be two disjoint, countably infinite sets. Prove that A U B is countably
infinite.

(b) Prove that the set of irrational numbers, R\Q, is uncountable. You may use the
facts discussed in the lectures that R\Q is infinite and R is uncountable without
proof.

(a)

(b)

So let A and B be two disjoint, countably infinite sets. Since these sets are countably
infinite, a bijective function to IN exists for both functions separately. It is then straight-
forward to map both these function together to Z instead, in the following way. Let f
be the bijective function such that f : A — N and let g be the bijective function such
that g : B — IN. Then, we can define a new functionh : AUB — Z as

h(x) = f(x)ifxe A
= —g(x)if x € B.

Since A N B = @, this function is unambiguously defined. Since Z is countably infinite,
A U B is countably infinite as well. O

Because of part (a), we know that if we have two disjoint, countably infinite sets and
join them, the result is still countably infinite. The opposite must then also be true: if we
have a countably infinite set and we divide it into two disjoint subsets, both of which
are infinite, then they still must be countable.

So then, for R\Q, we know that R is uncountably infinite. So when we split it into
rational and irrational subsets, from which we know that Q is countably infinite, R\Q
must be at least and at most uncountably infinite. [



Exercise 4

Let A be a subset of R which is bounded above, and let a, be an upper bound for A. Prove
that a, = sup A if and only if for every ¢ > 0, there exists a € A such that ay — ¢ < a.

Let A C R, with A bounded above by a,. So, we have to prove the implication both ways. First,
let’s prove that the implication to the right (—).

Assume that gy = sup A, so for all a € A, a < a,. Also, let ¢ > 0. If gy € A, then we pick a, as a
and get ay — ¢ < ay, which holds Ve > 0. If ay ¢ A, then we choose a as the average of a, and
ay — ¢, which is definitely smaller than ay. We are allowed to pick this as a, because we assume
without loss of generality that a > inf A. Then we get
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Since ¢ > 0, this always holds.
Now for the implication to the left («).

Assume now that the right side is true, i.e. let’s assume that Ve > 0, there exists a € A such
that ay — ¢ < a. Again, let us first investigate the case where a, € A. Well certainly still, if a, is
an upper bound for A and it is also part of the set itself, it must be the supremum’.

Then, let’s assume that a, ¢ A. Now, for all positive ¢, we know there exists an a € A such that
a # ayg and ay — € < a. Let us assume then that this implies that a, # sup A and try to come
to a contradiction. So, then there must be some b = sup A, which has as consequence that
a < b < ay, since b is still an uppoer bound of A (and ay ¢ A). Then, since b > a, we can pick
a=>b—¢ <b. So, from our initial assumption we getb —e <ay—e <b—¢ = b<ay <b,
which is a false statement. So, a, = sup A.

Since the implication holds both ways, the equivalence is proven. O]

IProven in earlier exercise.



Exercise 5

(a) Let a,b € R with a < b. Prove that the sets (—o0,a), (a,b) and (b, o) are open.
(b) Let A be a set (not necessarily a subset of R), and for each A € A, let Uy C R. Prove
that if U is open for all A € A then the set

UUA:{xEIR : A1 € A such that x € Uy}
AeA

is open.
(c) Letn € N, and let Uy, ...,U, C R. Prove that if Uy, ..., U, are open then the set

ﬂUm:{xE]R :x €Uy, forallm=1,..,n}

m=1

is open.
(d) Is the set of rationals Q C R open? Provide a proof to substantiate your claim.

(a) Since R is open, it is clear that (—oo, a) and (b, o) are open to the left and right respectively
as well. Also, their respective right and left side are present in (a, b) as well, so we will
only prove it for this case. The other cases follow logically.

Let a,b € R such that a < b. We want to show that for all x € (a,b) there exists ¢ > 0
such that (x — &, x + ¢) C (a,b). Since for all y € (a,b) such that x — ¢ < y < x + ¢ this
statement will recursively hold, we only need to prove that there exists ¢ > 0 such that
a < x —¢and x + ¢ < b. Then we can pick a fitting ¢ in the following way, depending if
x is closer to a or to b, formalized as follows.

Ifx—a=b—-x = 2x=b+a = x:l%,thenxispreciselybetweenaandband

we can pick ¢ to be %.Thenx+£<bandx—e>a.

When x —a < b — x, then x will be closer to a then to be and ¢ is bounded more by x’s
proximity to a than to b, i.e. ¢ < x —a. So we can pick ¢ = ** <x —a. Thenx —¢ =
x—*4 = *2¢ Since x > a, *3* > a. For the other side, x +& = x + ¢ < x+b’Tx = XTM <b
since x < b. So for both sides, we have shown that there exists an ¢ such that both

x—é&,x+¢ € (a,b). All elements inbetween x — ¢ and x + ¢ will also definitely be in (a, b).

The argument when b — x < x — a is very similar and will be left to the reader. Then, for
all x € (a,b), the statement is proven. O

(b) Non-formally speaking, in this exercise we want to prove that any union of open sets
in R is open itself. In order to make this formal, we will assume that U, is open for all
A € A and follow the definition as presented.

So, let us assume that U, is open for all A € A. This means that for every x; € U, there
exists an ¢ > 0 such that (x} — ¢,x1 + ¢) C U;. To prove that | ., U; is open, we need
to show that the same property holds for all y in this set. But since the union between
some sets is defined as the set that holds all the elements that any of these sets hold, this
is trivial: for any y € | J,c, for which we want to know what ¢ we need to show that the
union is open around that y, we just pick the corresponding ¢ for the subset U, which
was open. Since all elements in that U, are also in the union, this must certainly be the
case. [l



(c) Similarly to the previous exercise, non-formally speaking we want to prove that any
intersection of open sets in R is open itself. This is not as trivial as in the previeous
exercise however: since every set that is added as an intersection poses another restriction,
we don’t have the immediate guarantee that every ¢ from the subsets will also be a
well-defined element for the intersection set.

Now formally. Let n € N and let Uy, ...,U, C R. We assume that all U, ...,U, are open.
Then we will prove that (), _, U,, is open by induction over n.

For the base case, let n = 1. Then the intersection set is equivalent to U;. Since Uj is
open, then so is the intersection set.

For the inductive step, we assume that the intersection set is open for a certain n = h, i.e.
there exists an € > 0 such that (x — &, x + ¢) is open for every x € ﬂZl:l U,.. Now, we will
add one additional open set to this intersection, Uy, 1, such that n become h + 1. Note that
h +1 € IN. Let the new intersection set be denoted as [, and the old one as (). Then
in order to find an ¢ > 0 for every x € ﬂ/ such that (x — &, x + ¢), we take the smallest
of ¢’s for that x compared between (") and Uj,;. Since x € (), we know that x € () and
x € Upt1. Then the smallest accomponying ¢ always gives a well-defined open set inside
of () because |(x + &;) — (x — &,)| < |(x + &) — (x — &;)| if &; < &, and thus [ is open
itself. O]

(d) No, Q is not open in R. This is because we can’t find an ¢ > 0 such that for every q € Q,
(g —¢&,q+¢) C Q. We know that Q is dense in R, but as we have proven in exercise 1,
the converse is also true. For every real numbers, we can find a real number inbetween
that is not a rational number. So, we cannot pick an ¢ > 0 such that there is an interval
around x that itself is completely contained in Q. For every ¢ we pick, we can always
find a real number r such that x <r < x + e and x — e <r < x. So, Q is not open. O]

Exercise 6

Prove that "

lim =0
n—e 20n2 + 20n + 2020

In order to prove that this limit holds, we need to show that a function {x,} converges to x, i.e.
if for all ¢ > 0, 3M € N such that Vn > M the following inequality holds: |x, = x| < e.

Let ¢ > 0. We choose M € N such that -- < ¢ (Archimedean Property). Then for all n > M,
-0 = <F-< <y <e O

1 1 1
|20nz+20n+2020 20n%+20n+2020 — n?+n — M
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